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서비스 로봇의 한계
• 현재 서비스 로봇 기술은 변화하는 환경에서도 같은 수준의 상호작용을 제공

• 상업적 용도의 서비스 로봇에서 활용이 제한

• 환경과 사용자 변화에 적응하는 맞춤형 서비스를 제공함으로써 다양한 서비스 분야에서
신시장 창출 가능

※데이터·AI 경제 활성화 계획(‘19.1.), AI R&D 전략(‘18.5.) 및 혁신성장 실현을 위한 5G+ 전략(‘19.4) 
등에서 AI·로봇·클라우드가 융합된 新산업 육성 계획 발표

• 상업용･개인용 서비스 로봇은 높은 수준의 상호작용, 맥락이해, 개인화 기술 필요
• 현재 서비스 로봇의 멀티모달 상호작용과 맥락 이해 기술은 다수 사용자 환경에 공통
적용을 전제로 한 범용 지능에 의존

• 맥락 기반 개인화 및 적응화 기술은 다양한 상황에서 효과적으로 로봇 서비스를 제공
가능

• 맥락이해와 지역적 적응 학습 기술로 기존 서비스 로봇의 상업적 경쟁력 제고 가능
• 클라우드 로봇 지능을 통해 자체 기술력이 부족한 중소기업과 스타트업의 로봇 서비스 수준 향상
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Domain Shift in Robot Vision

Object Detection with robot vision (Angeletti et al., 2018*)

*Angele', Gabriele, Barbara Caputo, and Ta7ana Tommasi. "Adap7ve deep learning through visual domain localiza7on." In 2018 IEEE Interna-onal Conference on Robo-cs and Automa-on (ICRA), pp. 7135-7142. IEEE, 2018.
Fig. 3. Left: Overview of the 15 object categories of the iCubWorld Transformation dataset with 10 instances per category. Figure adapted from [37].
Right: Illustrative description of the two domain adaptation tasks designed for our experiments. Out of the whole set of translation and rotation images,
only the first 50 samples are considered as source data, while the last 50 samples define the target. To simplify the figure we show only 2 out of the
beginning and ending 50 images and only 2 objects (book, mug) out of the whole set of 15 categories. Often the objects are not centered or can be seen
only in part due to the large scale. Note also that the the set of object instances in the source and in the target do not overlap.

Since every category contains 10 object instances we di-
vided them into 6 and 4 for the two domains, introducing
a small unbalance that can be naturally present between
source and target. Thus in both transformation cases, one
domain (left / close) contains 4500 images while the other
(right / far) contains 3000 images. Note also that the the
set of object instances in the source and in the target do not
overlap. Both domains are used as source and target in turn
in our experiments. In particular we consider two settings:

• Adapt on whole-target: the whole labeled source data
and the whole unlabeled target data are exploited during
training and adaptation. At test time the learned model is
used to annotate the target samples.

• Adapt on sub-target: during training all the source data
are available, but only a sub-part of the target is provided.
Specifically, the source is composed by samples of all the
15 object categories, while the target visible at the training
phase contains only 8 object categories. Thus, while the
source classifier can still be trained to recognize 15 classes,
the joint adaptation process can leverage only 8 object
categories. At test time the whole 15 object target set
should be annotated, containing both the classes available
during training and the initially unseen 7 categories.

To quantitatively verify the presence of the visual domain
shift between the described data domains we run a first set
of experiments by training a classifier on the source and then
comparing the performance while testing on the source and
on the target [10]. We started by extracting features from
all the images by using the second fully-connected layer
(fc7) of AlexNet pretrained on Imagenet which provides a
representation vector of 4096 dimensions for each image.
The source domain is then randomly divided into 80% -
20% sets respectively used for training and testing a linear
SVM classifier. The same model is finally tested also on the
target. The obtained results are reported in Table I and show

TABLE I
EVALUATION OF THE DOMAIN SHIFT IN OUR EXPERIMENTAL SETTING

WHEN REPRESENTING THE IMAGES WITH ALEXNET FC7 FEATURES.
HERE S/T STAND FOR SOURCE/TARGET, WHILE X → Y MEANS THAT

THE CLASSIFIER IS TRAINED ON X AND TESTED ON Y. THE PRESENCE

OF DOMAIN SHIFT IS INDICATED BY THE LARGE DROP IN PERFORMANCE

BETWEEN S → S AND S → T.

S T S → S S → T

translation left right 98.33 45.80
right left 99.33 54.49

scale close far 99.45 18.44
far close 98.67 28.80

a drop in performance which indicate a significant amount
of domain shift, even more evident in the scale case than in
the translation one.

B. Experimental Analysis

We evaluate the performance of our LoAd network in
reducing the domain gap for the translation and scale settings
described above. As benchmark reference we use three
domain adaptation approaches that have shown state of the
art performance in computer vision for several non-robotic
tasks:

• DANN. The Domain Adversarial Neural Network [18]
takes as input both the labeled source and the unlabeled
target data and promotes the emergence of features that are
discriminative for the main learning task on the source do-
main and indiscriminate with respect to the shift between
the domains. This is obtained by keeping a single CNN
path till the second fully connected layer and then doubling
the final part of the network with the standard branch that
minimizes the classification loss and a new branch that
learns to confuse the domain discriminator.

• Auto-DIAL. This is a deep learning network whose final
objective is to minimize both the source classification
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Domain Shift by Translation and Scale

Fig. 3. Left: Overview of the 15 object categories of the iCubWorld Transformation dataset with 10 instances per category. Figure adapted from [37].
Right: Illustrative description of the two domain adaptation tasks designed for our experiments. Out of the whole set of translation and rotation images,
only the first 50 samples are considered as source data, while the last 50 samples define the target. To simplify the figure we show only 2 out of the
beginning and ending 50 images and only 2 objects (book, mug) out of the whole set of 15 categories. Often the objects are not centered or can be seen
only in part due to the large scale. Note also that the the set of object instances in the source and in the target do not overlap.

Since every category contains 10 object instances we di-
vided them into 6 and 4 for the two domains, introducing
a small unbalance that can be naturally present between
source and target. Thus in both transformation cases, one
domain (left / close) contains 4500 images while the other
(right / far) contains 3000 images. Note also that the the
set of object instances in the source and in the target do not
overlap. Both domains are used as source and target in turn
in our experiments. In particular we consider two settings:

• Adapt on whole-target: the whole labeled source data
and the whole unlabeled target data are exploited during
training and adaptation. At test time the learned model is
used to annotate the target samples.

• Adapt on sub-target: during training all the source data
are available, but only a sub-part of the target is provided.
Specifically, the source is composed by samples of all the
15 object categories, while the target visible at the training
phase contains only 8 object categories. Thus, while the
source classifier can still be trained to recognize 15 classes,
the joint adaptation process can leverage only 8 object
categories. At test time the whole 15 object target set
should be annotated, containing both the classes available
during training and the initially unseen 7 categories.

To quantitatively verify the presence of the visual domain
shift between the described data domains we run a first set
of experiments by training a classifier on the source and then
comparing the performance while testing on the source and
on the target [10]. We started by extracting features from
all the images by using the second fully-connected layer
(fc7) of AlexNet pretrained on Imagenet which provides a
representation vector of 4096 dimensions for each image.
The source domain is then randomly divided into 80% -
20% sets respectively used for training and testing a linear
SVM classifier. The same model is finally tested also on the
target. The obtained results are reported in Table I and show

TABLE I
EVALUATION OF THE DOMAIN SHIFT IN OUR EXPERIMENTAL SETTING

WHEN REPRESENTING THE IMAGES WITH ALEXNET FC7 FEATURES.
HERE S/T STAND FOR SOURCE/TARGET, WHILE X → Y MEANS THAT

THE CLASSIFIER IS TRAINED ON X AND TESTED ON Y. THE PRESENCE

OF DOMAIN SHIFT IS INDICATED BY THE LARGE DROP IN PERFORMANCE

BETWEEN S → S AND S → T.

S T S → S S → T

translation left right 98.33 45.80
right left 99.33 54.49

scale close far 99.45 18.44
far close 98.67 28.80

a drop in performance which indicate a significant amount
of domain shift, even more evident in the scale case than in
the translation one.

B. Experimental Analysis

We evaluate the performance of our LoAd network in
reducing the domain gap for the translation and scale settings
described above. As benchmark reference we use three
domain adaptation approaches that have shown state of the
art performance in computer vision for several non-robotic
tasks:

• DANN. The Domain Adversarial Neural Network [18]
takes as input both the labeled source and the unlabeled
target data and promotes the emergence of features that are
discriminative for the main learning task on the source do-
main and indiscriminate with respect to the shift between
the domains. This is obtained by keeping a single CNN
path till the second fully connected layer and then doubling
the final part of the network with the standard branch that
minimizes the classification loss and a new branch that
learns to confuse the domain discriminator.

• Auto-DIAL. This is a deep learning network whose final
objective is to minimize both the source classification
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Fig. 3. Left: Overview of the 15 object categories of the iCubWorld Transformation dataset with 10 instances per category. Figure adapted from [37].
Right: Illustrative description of the two domain adaptation tasks designed for our experiments. Out of the whole set of translation and rotation images,
only the first 50 samples are considered as source data, while the last 50 samples define the target. To simplify the figure we show only 2 out of the
beginning and ending 50 images and only 2 objects (book, mug) out of the whole set of 15 categories. Often the objects are not centered or can be seen
only in part due to the large scale. Note also that the the set of object instances in the source and in the target do not overlap.

Since every category contains 10 object instances we di-
vided them into 6 and 4 for the two domains, introducing
a small unbalance that can be naturally present between
source and target. Thus in both transformation cases, one
domain (left / close) contains 4500 images while the other
(right / far) contains 3000 images. Note also that the the
set of object instances in the source and in the target do not
overlap. Both domains are used as source and target in turn
in our experiments. In particular we consider two settings:

• Adapt on whole-target: the whole labeled source data
and the whole unlabeled target data are exploited during
training and adaptation. At test time the learned model is
used to annotate the target samples.

• Adapt on sub-target: during training all the source data
are available, but only a sub-part of the target is provided.
Specifically, the source is composed by samples of all the
15 object categories, while the target visible at the training
phase contains only 8 object categories. Thus, while the
source classifier can still be trained to recognize 15 classes,
the joint adaptation process can leverage only 8 object
categories. At test time the whole 15 object target set
should be annotated, containing both the classes available
during training and the initially unseen 7 categories.

To quantitatively verify the presence of the visual domain
shift between the described data domains we run a first set
of experiments by training a classifier on the source and then
comparing the performance while testing on the source and
on the target [10]. We started by extracting features from
all the images by using the second fully-connected layer
(fc7) of AlexNet pretrained on Imagenet which provides a
representation vector of 4096 dimensions for each image.
The source domain is then randomly divided into 80% -
20% sets respectively used for training and testing a linear
SVM classifier. The same model is finally tested also on the
target. The obtained results are reported in Table I and show

TABLE I
EVALUATION OF THE DOMAIN SHIFT IN OUR EXPERIMENTAL SETTING

WHEN REPRESENTING THE IMAGES WITH ALEXNET FC7 FEATURES.
HERE S/T STAND FOR SOURCE/TARGET, WHILE X → Y MEANS THAT

THE CLASSIFIER IS TRAINED ON X AND TESTED ON Y. THE PRESENCE

OF DOMAIN SHIFT IS INDICATED BY THE LARGE DROP IN PERFORMANCE

BETWEEN S → S AND S → T.

S T S → S S → T

translation left right 98.33 45.80
right left 99.33 54.49

scale close far 99.45 18.44
far close 98.67 28.80

a drop in performance which indicate a significant amount
of domain shift, even more evident in the scale case than in
the translation one.

B. Experimental Analysis

We evaluate the performance of our LoAd network in
reducing the domain gap for the translation and scale settings
described above. As benchmark reference we use three
domain adaptation approaches that have shown state of the
art performance in computer vision for several non-robotic
tasks:

• DANN. The Domain Adversarial Neural Network [18]
takes as input both the labeled source and the unlabeled
target data and promotes the emergence of features that are
discriminative for the main learning task on the source do-
main and indiscriminate with respect to the shift between
the domains. This is obtained by keeping a single CNN
path till the second fully connected layer and then doubling
the final part of the network with the standard branch that
minimizes the classification loss and a new branch that
learns to confuse the domain discriminator.

• Auto-DIAL. This is a deep learning network whose final
objective is to minimize both the source classification
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Human-Robot Interaction Context

Fig. 3. Left: Overview of the 15 object categories of the iCubWorld Transformation dataset with 10 instances per category. Figure adapted from [37].
Right: Illustrative description of the two domain adaptation tasks designed for our experiments. Out of the whole set of translation and rotation images,
only the first 50 samples are considered as source data, while the last 50 samples define the target. To simplify the figure we show only 2 out of the
beginning and ending 50 images and only 2 objects (book, mug) out of the whole set of 15 categories. Often the objects are not centered or can be seen
only in part due to the large scale. Note also that the the set of object instances in the source and in the target do not overlap.

Since every category contains 10 object instances we di-
vided them into 6 and 4 for the two domains, introducing
a small unbalance that can be naturally present between
source and target. Thus in both transformation cases, one
domain (left / close) contains 4500 images while the other
(right / far) contains 3000 images. Note also that the the
set of object instances in the source and in the target do not
overlap. Both domains are used as source and target in turn
in our experiments. In particular we consider two settings:

• Adapt on whole-target: the whole labeled source data
and the whole unlabeled target data are exploited during
training and adaptation. At test time the learned model is
used to annotate the target samples.

• Adapt on sub-target: during training all the source data
are available, but only a sub-part of the target is provided.
Specifically, the source is composed by samples of all the
15 object categories, while the target visible at the training
phase contains only 8 object categories. Thus, while the
source classifier can still be trained to recognize 15 classes,
the joint adaptation process can leverage only 8 object
categories. At test time the whole 15 object target set
should be annotated, containing both the classes available
during training and the initially unseen 7 categories.

To quantitatively verify the presence of the visual domain
shift between the described data domains we run a first set
of experiments by training a classifier on the source and then
comparing the performance while testing on the source and
on the target [10]. We started by extracting features from
all the images by using the second fully-connected layer
(fc7) of AlexNet pretrained on Imagenet which provides a
representation vector of 4096 dimensions for each image.
The source domain is then randomly divided into 80% -
20% sets respectively used for training and testing a linear
SVM classifier. The same model is finally tested also on the
target. The obtained results are reported in Table I and show

TABLE I
EVALUATION OF THE DOMAIN SHIFT IN OUR EXPERIMENTAL SETTING

WHEN REPRESENTING THE IMAGES WITH ALEXNET FC7 FEATURES.
HERE S/T STAND FOR SOURCE/TARGET, WHILE X → Y MEANS THAT

THE CLASSIFIER IS TRAINED ON X AND TESTED ON Y. THE PRESENCE

OF DOMAIN SHIFT IS INDICATED BY THE LARGE DROP IN PERFORMANCE

BETWEEN S → S AND S → T.

S T S → S S → T

translation left right 98.33 45.80
right left 99.33 54.49

scale close far 99.45 18.44
far close 98.67 28.80

a drop in performance which indicate a significant amount
of domain shift, even more evident in the scale case than in
the translation one.

B. Experimental Analysis

We evaluate the performance of our LoAd network in
reducing the domain gap for the translation and scale settings
described above. As benchmark reference we use three
domain adaptation approaches that have shown state of the
art performance in computer vision for several non-robotic
tasks:

• DANN. The Domain Adversarial Neural Network [18]
takes as input both the labeled source and the unlabeled
target data and promotes the emergence of features that are
discriminative for the main learning task on the source do-
main and indiscriminate with respect to the shift between
the domains. This is obtained by keeping a single CNN
path till the second fully connected layer and then doubling
the final part of the network with the standard branch that
minimizes the classification loss and a new branch that
learns to confuse the domain discriminator.

• Auto-DIAL. This is a deep learning network whose final
objective is to minimize both the source classification
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Fig. 3. Left: Overview of the 15 object categories of the iCubWorld Transformation dataset with 10 instances per category. Figure adapted from [37].
Right: Illustrative description of the two domain adaptation tasks designed for our experiments. Out of the whole set of translation and rotation images,
only the first 50 samples are considered as source data, while the last 50 samples define the target. To simplify the figure we show only 2 out of the
beginning and ending 50 images and only 2 objects (book, mug) out of the whole set of 15 categories. Often the objects are not centered or can be seen
only in part due to the large scale. Note also that the the set of object instances in the source and in the target do not overlap.

Since every category contains 10 object instances we di-
vided them into 6 and 4 for the two domains, introducing
a small unbalance that can be naturally present between
source and target. Thus in both transformation cases, one
domain (left / close) contains 4500 images while the other
(right / far) contains 3000 images. Note also that the the
set of object instances in the source and in the target do not
overlap. Both domains are used as source and target in turn
in our experiments. In particular we consider two settings:

• Adapt on whole-target: the whole labeled source data
and the whole unlabeled target data are exploited during
training and adaptation. At test time the learned model is
used to annotate the target samples.

• Adapt on sub-target: during training all the source data
are available, but only a sub-part of the target is provided.
Specifically, the source is composed by samples of all the
15 object categories, while the target visible at the training
phase contains only 8 object categories. Thus, while the
source classifier can still be trained to recognize 15 classes,
the joint adaptation process can leverage only 8 object
categories. At test time the whole 15 object target set
should be annotated, containing both the classes available
during training and the initially unseen 7 categories.

To quantitatively verify the presence of the visual domain
shift between the described data domains we run a first set
of experiments by training a classifier on the source and then
comparing the performance while testing on the source and
on the target [10]. We started by extracting features from
all the images by using the second fully-connected layer
(fc7) of AlexNet pretrained on Imagenet which provides a
representation vector of 4096 dimensions for each image.
The source domain is then randomly divided into 80% -
20% sets respectively used for training and testing a linear
SVM classifier. The same model is finally tested also on the
target. The obtained results are reported in Table I and show

TABLE I
EVALUATION OF THE DOMAIN SHIFT IN OUR EXPERIMENTAL SETTING

WHEN REPRESENTING THE IMAGES WITH ALEXNET FC7 FEATURES.
HERE S/T STAND FOR SOURCE/TARGET, WHILE X → Y MEANS THAT

THE CLASSIFIER IS TRAINED ON X AND TESTED ON Y. THE PRESENCE

OF DOMAIN SHIFT IS INDICATED BY THE LARGE DROP IN PERFORMANCE

BETWEEN S → S AND S → T.

S T S → S S → T

translation left right 98.33 45.80
right left 99.33 54.49

scale close far 99.45 18.44
far close 98.67 28.80

a drop in performance which indicate a significant amount
of domain shift, even more evident in the scale case than in
the translation one.

B. Experimental Analysis

We evaluate the performance of our LoAd network in
reducing the domain gap for the translation and scale settings
described above. As benchmark reference we use three
domain adaptation approaches that have shown state of the
art performance in computer vision for several non-robotic
tasks:

• DANN. The Domain Adversarial Neural Network [18]
takes as input both the labeled source and the unlabeled
target data and promotes the emergence of features that are
discriminative for the main learning task on the source do-
main and indiscriminate with respect to the shift between
the domains. This is obtained by keeping a single CNN
path till the second fully connected layer and then doubling
the final part of the network with the standard branch that
minimizes the classification loss and a new branch that
learns to confuse the domain discriminator.

• Auto-DIAL. This is a deep learning network whose final
objective is to minimize both the source classification
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Performance downgrades by domain shift
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Domain Shift in Robot Vision

*Mancini, Massimiliano, Hakan Karaoguz, Elisa Ricci, Patric Jensfelt, and Barbara Caputo. "Kitting in the wild through online domain adaptation." In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS), pp. 1103-1109. IEEE, 2018.

DomainsTABLE I: Example Images from KTH Handtool Dataset

Camera Type Illumination
Artificial Cloudy Directed

Kinect

Webcam

one for the source and the other for the target domain. The
two branches share the same parameters but embed different
domain-specific BN layers. These layers compute different
statistics for the source and the target domains, resulting
into domain-specific normalizations. In other words, the
domain-specific BN layers allow the distributions of features
of different domains to be aligned to the same reference
distribution, achieving the desired domain adaptation effect.

C. ONDA: ONline Domain Adaptation

In this paper we adopt the same idea proposed in [16],
[24], [17] but we consider an online setting. Instead of having
a fixed target set available during training, we propose to
exploit the stream of data acquired while the robot is acting
in the environment and continuously update the BN statistics.
In this way, we can gradually adapt the deep network to a
novel scenario.

Formally, we consider a different scenario with respect
to standard DA algorithms. Opposite to traditional domain
adaptation in a batch setting, during training we have only
access to the source domain S and we do not have any data
or prior information about the target domain T , apart from
the set of semantic labels which is assumed to be shared.
When the robot is active, the current working conditions
will compose the target domain and we will have access
to the automatically acquired sequence of images T =
{It1, · · · , ItT }. In this scenario, in order to adapt the network
parameters ✓ to this novel domain, we must exploit the
incoming test images collected by the robot on the fly.

If the network contains BN layers, following the idea
of previous works [16], [24], [17], we can perform the
adaptation by simply updating the BN statistics with the
incoming images of the novel domain. Specifically, we start
by training the network on the source domain S , initializing
the BN statistics at time t = 0 as {µ0,�2

0} = {µS ,�2
S}.

Assuming that the set of network parameters ✓ are shared
between the source and target domain except for the BN
statistics, we can adapt the network classifier f✓ by updating
the BN statistics with the estimates computed from the
sequence T . Defining as nt the number of target images
to use for updating online the BN statistics, we can compute

a partial estimate {µ̂t, �̂2
t } of the BN statistics as:

µ̂t =
1

nt

ntX

i=1

xi �̂t
2 =

1

nt

ntX

i=1

(xi � µ̂t)
2

The global statistics at time t can be updated as follows:

�2
t = (1� ↵)�2

t�1 + ↵
nt

nt � 1
�̂2
t

µt = (1� ↵)µt�1 + ↵µ̂t

where ↵ is the hyper-parameter regulating the decay of the
moving average.

The above formulation achieves a similar adaptation effect
of the methods [16], [24], [17] but with three main advan-
tages. First, no samples of the target domain, neither labeled
nor unlabeled, are used during training. Thus, no further
data acquisition and annotation efforts are required. Second,
since we do not exploit target data for training, contrary to
standard DA algorithms, we have no bias towards a particular
target domain. Third, since the adaptation process is online,
the model can adapt itself to multiple sequential changes
of the working conditions, being able to tackle unexpected
environmental variations (e.g. sudden illumination changes).

The reader might wonder if other possible choices may
be considered for initializing {µ0,�2

0}, such as exploiting
a first calibration phase where the robot collects images of
the target domain in order to produce a first estimate of the
BN statistics. Here we choose to use the statistics estimated
on the source domain because 1) we want a model ready to
be employed, without requiring any additional preparation
at test time; 2) the robot may occur in multiple domains
during employment and if a shift occurs (e.g. illumination
condition changes) our method will automatically adapt the
visual model to the novel domain starting from the current
estimated statistics: initializing {µ0,�2

0} = {µS ,�2
S} allows

to check the performance of the algorithm even for multiple
sequential shifts and long-term applications. Obviously our
method can benefit from a calibration phase or initializations
of the statistics closer to the target working conditions: we
plan to analyze these aspects in future works.

(a) Source Domain: Artificial light, Kinect camera and White background

(b) Source Domain: Cloudy light, Webcam camera and Brown background

Fig. 4: Experiments on isolated shifts. The labels of the x-axes denote the conditions of target domain, with the first line
indicating the light condition, the second the camera and the third the background. We underlined the changes between the
source and target domains.

Fig. 5: Accuracy vs number of updates of ONDA for
different values of ↵ fixing nt = 10 in a sample scenario.
The red line denotes the BN lower bound of the starting
model, while the yellow line the DIAL upper bound.

the statistics, highlighted by the smoothness of the respective
lines in the graph, with the drawback of a lower speed of
adaptation to the novel domain, caused by the lower update
frequency.

The speed of adaptation and the final quality of the BN
statistics is obviously a consequence of the values chosen
for both hyper-parameters. Obviously ↵ and nt are not
independent from each other: for a lower nt a lower ↵ should
be selected in order to preserve the final performance of the
algorithm and conversely for a higher nt, a higher ↵ will
allow a faster adaptation of the model. As a trade-off between
fast adaptation and good results, we found experimentally
that choosing nt = {5, 10, 20} and ↵ = {0.05, 0.1} worked
well for both short and long term experiments.

3
Fig. 6: Accuracy vs number of frames processed of ONDA
for different values of nt fixing ↵ = 0.1 in a sample scenario.
The red line denotes the BN lower bound of the starting
model, while the yellow line the DIAL upper bound.

VI. CONCLUSIONS

In this work, we presented a novel dataset for addressing
the kitting task in robotics. The dataset takes into account
multiple variations of acquisition conditions such as cam-
era, illumination and background changes which may occur
during the robot employment. This dataset is intended for
testing the robustness of robot vision algorithms to changing
environments, providing a novel benchmark for assessing the
robustness of robot vision systems.

Together with the dataset, we proposed an algorithm which
is able to perform online adaptation of deep models to unseen
scenario. The algorithm, based on the update of the statistics
of batch-normalization layers, is able to continuously adapt
the model to the current environmental conditions of the

Accuracy on different domains

Object Recognition with robot vision (Massimiliano et al., 2018*)
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로봇의 맥락 이해 지능

정적, 폐쇄적

현재 서비스 로봇의 맥락 이해 지능은……

대용량데이터셋구축
Labeled Dataset 훈련

지능 모델M

배포활용
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로봇의 맥락 이해 지능

서비스 환경 변화

태스크 변화

검출/인식 성능 저하

검출/인식 불가능

정적, 폐쇄적

현재 서비스 로봇의 맥락 이해 지능은……
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클라우드 로봇 지능

클라우드 로봇 복합인공지능 시스템
(총괄/세부1 과제)

로봇 지능 학습 모델 최적화

지능 증강과 공유 학습

전역 클라우드 지역 클라우드
@식당1

로봇지능 저장소

① 음식/상태 인식 기본 지능 모델 배포

복잡한 배경
동적 가림
조명 변화

인식 신뢰도 저하 발생!

지역 로봇 지능

서비스환경변화

음식 데이터 수집

⑤ 지역 적응 학습

인식 신뢰도 향상

지역 최적 지능 모델 공유

지역
클라우드
@식당2

지역
클라우드
@식당3

지역
클라우드
@식당4

지역
클라우드
@식당n

신규 메뉴
추가

신메뉴 인식 불가!

태스크 변화

데이터 공유 (Unlabeled Data)

음식/상태 인식 전역 최적 지능 모델 배포

신메뉴 인식 가능!

②

③

④

⑥

⑦

⑧

⑨

⑩

⑩⑪

⑫
⑬ 전역 지능 적용

⑭

맥락이해
서비스

개인화/특화

+
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도메인 적응: Unsupervised & Active
연구 목표 핵심연구개발결과

● 지역 도메인의 특성을 활용하여 모델의 성능을 향상시키는
기술(Domain Adaptation)을 활용한 서비스 맥락 이해 기술의
고도화

● 사용자 참여를 통해 지역 도메인의 지식을 증강시키고 이를
활용하는 Interactve Target Domain 적응 기술 개발

● 학습 및 실제 환경 사이 차이로 인한 성능 저하 확인

● 비지도 도메인 적응 (UDA) 기술 개발 및 성능 개선 확인

● 사용자 참여를 통한 지식 증강 기술 적용 및 성능 개선 확인

● 비지도 도메인 적응 기술 개발

• 시점 변화(90도 à 10도) 시 83.39% à 67.48% 성능 저하

• 스타일 적응(1), 모조 정답 부여, 특징 정렬 기법(2) 적용

• 음식 검출, 양 인식, 진행 상태 4%p ~ 9%p 성능 개선

● 능동적 도메인 적응 기술 개발

• 지역 데이터 중 다양성과 불확실성 기반 샘플 선택

• 987개 지역 샘플 중 100/300/500개를 샘플로 선택

• 소수 샘플의 경우 적응 성능: 불확실성>다양성>무작위

• 100장 샘플 활용 시 정확도 12%p ~ 13%p 개선

자체 DB에서 도메인 적응기술 적용 전후 인식 성능 비교

UDA기반 source-only 특징 정렬 스타일 적응 모조 정답 스타일 적응+모조 정답

평균 67.48 67.12 67.76 70.25 73.30 (+5.82)

ADA기반 source-only 무작위 다양성 불확실성 target-only

평균 67.48 77.09/80.21/
82.51

77.40/81.47/
82.50

80.02/81.66/
82.51

83.39

(1) W. Yun et al., “Target-Style-Aware Unsupervised Domain Adaptation for Object Detection,” RA-L2021.
(2) K. Saito et al., “Strong-Weak Distribution Alignment for Adaptive Object Detection,” CVPR2019.

촬영각 도메인 차이:
왼쪽부터 90도, 45도, 10도

도메인 차이에 따른 성능 저하

촬영각도 3종 평균

All à All 81.91

10 à 10 83.39

45 à 10 85.65

90 à 10 67.48

자체 구축 데이터 예
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도메인 적응: Unsupervised & Active

도메인 적응 후,
인식 결과

도메인 적응 전
초기 모델을 이용한 인식 결과

도메인 적응에 따른 서비스 맥락 이해 지능 성능 비교

음식 검출과 양 추정 오류가 다수 발생 음식 검출과 양 추정이 상대적으로 정확
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연구 목표 핵심연구개발결과

● 초기 학습 환경과 상이한 지역 도메인으로의 적응을 위한
신경망 구조와 Unsupervised Domain Adaptation 기법

● 도메인 별로 특화된 특성과 도메인 사이에서 공유하는 특성을
분리하여 효과적으로 학습하기 위한 신경망 계층(Layer)

● 정답 확보로 인한 정보 확장 효율을 높이기 위한 능동 학습
도메인 적응 방법을 제안

● DomainNet 데이터셋 대상 상이한 도메인 대상 분류 정확도
59.1% 달성 (3-shot Active Domain Adaptation, SOTA 성능)

도메인 적응: Active

성능

지역 획득 데이터 중 로봇이 선별한 소수 샘플의 정답을 확보하여 활용

기술 얼개 (CVPR’22 논문 투고)

기술 정확도(%)
(1-shot)

정확도(%)
(3-shot)

MME 44.2 48.2

APE 44.6 48.9

MetaMME 48.8 -

BiAT 45.5 49.4

CDAC 52.1 56.2

Ours 55.1 59.1

DB: 사물345종,도메인6개, 60만장

Figure 13. Images sampled from real domain of the DomainNet dataset.
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도메인 적응: 온라인 태깅 시스템

담고있는정보

{
‘req_id’: 1104891,                    # 요청 번호
‘raw_data’: ‘img_20210730_01483.jpg’, # 원본 데이터 파일 이름
‘task’: 1,                            # 얼굴 레이블링 태스크
’result’: {                           # 지능 모듈 실행 결과
‘clothing_dets’:                    # 의상 검출/인식 결과
[
{‘bbox’:(…,…,…,…), ‘style’: ‘suit’},    # 사람 영역 좌표, 수트
{‘bbox’:(…,…,…,…), ‘style’: ‘uniform’}, # 사람 영역 좌표, 유니폼
……

]
{

}

정답 요청 예시

담고있는정보

img_20210730_01483.jpg

사람
사람

사람

의상스타일: 수트 의상스타일: 유니폼

담고있는정보

{
‘req_id’: 1104891,                    # 요청 번호
‘raw_data’: ‘img_20210730_01483.jpg’, # 원본 데이터 파일 이름
‘task’: 1,                            # 얼굴 레이블링 태스크
’result’: {                           # 지능 모듈 실행 결과
‘clothing_dets’:                    # 의상 검출/인식 결과
[
{‘bbox’:(…,…,…,…), ‘style’: ‘suit’},    # 사람 영역 좌표, 수트
{‘bbox’:(…,…,…,…), ‘style’: ‘uniform’}, # 사람 영역 좌표, 수트
{‘bbox’:(…,…,…,…), ‘style’: ‘uniform’}, # 사람 영역 좌표, 유니폼
{‘bbox’:(…,…,…,…), ‘style’: ‘uniform’}, # 사람 영역 좌표, 유니폼
……

]
{

}

정답 데이터 예시

사람
사람

사람

의상스타일: 수트 의상스타일: 수트

사람

의상스타일: 유니폼

사람

의상스타일: 유니폼

빨강색폰트: 보정된정답
파랑색: 추가된정답

온라인태깅시스템구조
● 정답이없는지역획득데이터에

대한정답을확보할수있는
Human-in-the-Loop 시스템

● 능동적도메인적응방법활용에
최적

● 로봇을통해입수한이미지와
지역로봇지능모듈이추론한
결과를함께온라인태깅
시스템에제공하고정답여부
확인,오류보정,미검출내역
추가를요청

개발 목적

● 상용 크라우드소싱 기반
데이터 태깅 시스템과 연동

● 태깅 요청 후 응답까지 약
1~2일 소요

● 이미지 2,000장으로 시스템
운영 시험 진행

● 향후 테스트베드와 실환경
기반 기술 검증에 활용 계획

개발 결과
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연구 목표 핵심연구개발결과

● 사용자 입력을 최소로 받아 지역 획득 데이터의 정답을
생성하는 Weakly Supervised Learning 기술과 신경망

● 소수 정답 데이터를 이용해 지역 획득 데이터의 정답을
생성하는 Few-Shot Learning 기술과 신경망

● 이미지 분류 정답에서 의미/개체 분할, 윤곽 검출 정답을
생성하는 WSL 기술 개발: SOTA 성능 달성

● 소수의 의미 분할 정답에서 다수 데이터의 의미 분할 정답을
생성하는 Few-Shot Learning 기술 개발: SOTA 성능 달성

● SCI급 저널/최우수 학회 논문 2편 투고 (IJCV, CVPR 2021)

WSL 기반 영상 분할 기술의 처리 과정

모델 정답 데이터 부가 정보 𝐴𝑃!"#
PRM [3] 이미지 분류 MCG [4] 26.8%
SDI [5] 사물 검출 BSDS [6] 44.8%
SDS [7] 영상 분할 MCG [4] 43.8%
Ours 이미지 분류 - 46.7%

성능 비교표
(위로부터 의미 분할, 개체 분할, 경계 추출, Few-Shot 의미 분할)

모델 정답 데이터 부가 정보 평균 IoU
DSRG [8] 이미지 분류 MSRA-B [9] 63.2%
SDI [5] 사물 검출 BSDS [6] 67.5%
Ours 이미지 분류 - 64.8%

모델 정답 데이터 부가 정보 평균 IoU
CASENet [13] 이미지 분류 VGG19 56.8%
Det+HED [14] 사물 검출 VGG16 51.9%

Ours 이미지 분류 Resnet50 59.8%

모델 1-shot mIoU 5-shot mIoU
PANet [15] 48.1% 55.7%
PGNet [16] 56.0% 58.5%

Ours 56.7% 62.6%

개체 분할(좌), Few-Shot 의미 분할(우) 예시

학습 영상 정답 예측 결과

도메인적응: 정답확보비용절감
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●서비스 분야: 식당의 식사 서비스 맥락 이해
●정답: 음식 종류, 음식 양, 식사 상태(식사 전/중/후)
●도메인
• 음식 종류: 5종(한식, 양식, 일식, 중식, 패스트푸드)
• 매장: 음식 종류 별 5개
• 위치: 매장 별로 2곳
• 시야각: 3종 (10도, 45도, 90도)

●데이터 형식: RGB 동영상
●규모: 직촬 동영상 50개 / 유튜브 동영상 70개

시야각90도시야각45도시야각10도

위치2

위치1

도메인 적응: 실환경 데이터셋 확보
외형 특징 데이터 식사 서비스 맥락 데이터

●서비스 분야: 식당/전시관의 개인화 맥락 이해
●정답: 의상 속성 (스타일, 색상, 무늬, 소매 길이 등)
●도메인
• 장소: 5개 (식당 3곳, 전시관 2곳)
• 위치: 장소 별 5곳 (조명 등 환경 조건 차이 고려)
• 시간대: 2종 (낮, 밤)

●데이터 형식: RGB 동영상
●규모: 직촬 동영상 5,000개

동일 장소의 다른 위치와 시간대 촬영 영상

위치1, 낮

위치3, 낮

위치2, 낮

위치1, 밤



열린 세계 인지와 지속 성장
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현재 로봇은 닫힌 세계 가정 하에 세상을 인지
•기존 로봇은 “지능의 유연성” 부재
• 지식의 불확실성을 판단하지 못함
• 새로운 지식을 수용하여 성장하지 못함

단발적 판단/규칙모른다는 사실을 모름

새로운 환경과 데이터에 적응하지 못함

고양이-개 분류 모델

지능이 성장하지 않음

Dog 
(98.1%) Dog (95.4%)

AI 활용성 저하
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로봇의 인지 문제
인공지능의 실환경 적용에서 광범위하게 발생

로봇 기반 사물 검출 사례 (20종 사물 훈련)

손목 -> 양말, 형광등 -> 핸드폰,
선풍기 -> 모자, 고무장갑 -> 컵 등

일상행동인식의 Confidence 분포

대부분의 인식 오류 상황에서 Confidence는 0.99 
~ 1.0 사이에 분포

처음 보는 물체들을 오인 Over-Confidence

의료 진단, 자율차,
안전 관리 등

불확실성 관리 필요

Mission-Critical Cases

Published as a conference paper at ICLR 2022

�D��2YHUFRQILGHQW�SUHGLFWLRQV�
RQ�22'�GDWD�

�E��8QFHUWDLQW\�PHDVXUH�RQ�PRGHO�WUDLQHG
ZLWKRXW�RXWOLHUV��QRW�LGHDO��

�F��8QFHUWDLQW\�PHDVXUH�RQ�PRGHO�WUDLQHG�
ZLWK�YLUWXDO�RXWOLHUV��RXUV��

Figure 1: (a) A Faster-RCNN (Ren et al., 2015) model trained on BDD-100k dataset (Yu et al., 2020) produces
overconfident predictions for OOD object (e.g., moose). (b)-(c) The uncertainty measurement with and without
virtual outlier training. The in-distribution data x 2 X = R2 is sampled from a Gaussian mixture model).
Regularizing the model with virtual outliers (c) better captures the OOD uncertainty than without (b).

Alongside, we propose a novel unknown-aware training objective, which contrastively shapes the
uncertainty surface between the ID data and synthesized outliers (Section 3.2). During training, VOS
simultaneously performs the ID task (e.g., classification or object detection) as well as the OOD un-
certainty regularization. During inference time, the uncertainty estimation branch produces a larger
probabilistic score for ID data and vice versa, which enables effective OOD detection (Section 3.3).

VOS offers several compelling advantages compared to existing solutions. (1) VOS is a general

learning framework that is effective for both object detection and image classification tasks, whereas
previous methods were primarily driven by image classification. Image-level detection can be lim-
iting as an image could be OOD in certain regions while being in-distribution elsewhere. Our work
bridges a critical research gap since OOD detection for object detection is timely yet underexplored
in literature. (2) VOS enables adaptive outlier synthesis, which can be flexibly and conveniently
used for any ID data without manual data collection or cleaning. In contrast, previous methods us-
ing outlier exposure (Hendrycks et al., 2019) require an auxiliary image dataset that is sufficiently
diverse, which can be arguably prohibitive to obtain. Moreover, one needs to perform careful data
cleaning to ensure the auxiliary outlier dataset does not overlap with ID data. (3) VOS synthesizes
outliers that can estimate a compact decision boundary between ID and OOD data. In contrast, ex-
isting solutions use outliers that are either too trivial to regularize the OOD estimator, or too hard to
be separated from ID data, resulting in sub-optimal performance. Our key contributions and results
are summarized as follows:

• We propose a new framework VOS addressing a pressing issue—unknown-aware deep
learning that optimizes for both ID and OOD performance. VOS establishes state-of-the-art

results on a challenging object detection task. Compared to the best method, VOS reduces
the FPR95 by up to 7.87% while preserving the accuracy on the ID task.

• We conduct extensive ablations and reveal important insights by contrasting different out-
lier synthesis approaches. We show that VOS is more advantageous than generating outliers
directly in the high-dimensional pixel space (e.g., using GAN (Lee et al., 2018a)) or using
noise as outliers.

• We comprehensively evaluate our method on common OOD detection benchmarks, along
with a more challenging yet underexplored task in the context of object detection. Our
effort facilitates future research to evaluate OOD detection in a real-world setting.

2 PROBLEM SETUP

We start by formulating the problem of OOD detection in the setting of object detection. Our frame-
work can be easily generalized to image classification when the bounding box is the entire image
(see Section 4.2). Most previous formulations of OOD detection treat entire images as anomalies,
which can lead to ambiguity shown in Figure 1. In particular, natural images are composed of nu-
merous objects and components. Knowing which regions of an image are anomalous could allow
for safer handling of unfamiliar objects. This setting is more realistic in practice, yet also more
challenging as it requires reasoning OOD uncertainty at the fine-grained object level.

2
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열린 세계 인지와 지속 성장이 필요
•불확실성 자각과 질의응답을 통해 “지능의 유연성” 확보
• 학습하지 않은 멀티모달 OOD* 정보를 접하면 불확실성을 자각
•질의응답을 통해 불확실성을 해소하고 학습하며 성장

성장 학습

모른다는 사실을 깨달음불확실성을 자각하는 분류
모델

OOD Dog (95.4%)

무엇인가?

“사람
”

질문하여 정보 획득

cat

dog

human

지식 확장

cat

dog

cat

dog

human

* OOD: Out-Of-Distribution
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Out-Of-Distribution Generalization
•불확실성 자각은 차세대 인공지능의 핵심 원천 기술
• Yoshua Bengio 교수는 에이전트의 학습에 있어 가장 중요한 요소 중 하나로

OOD 일반화 (OOD Generalization) 능력을 제기
• 훈련 상황과 상이한 응용 상황에 대응하는데 OOD 일반화는 핵심 요소

출처: Yoshua Bengio, “From System 1 Deep Learning to System 2 Deep Learning,” NeurIPS Invited Talk, 2019.

AGENT LEARNING NEEDS
OOD GENERALIZATION

Agents face non-stationarities

Multi-agent systems: many changes in distribution
Ood generalization needed for continual learning

8

Changes in distribution due to 

• their actions 

• actions of other agents

• different places, times, sensors, 
actuators, goals, policies, etc.

비정상성 (Non-Stationarities)
발생

대응을 위해
OOD 일반화 능력 필요

장소, 시간, 센서와 액추에이터, 목표,
정책 등 각종 요인의 변화

+ 에이전트와 타 에이전트의 행위
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모르는 점을 알기

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

(b) Semantic Anomaly Detection 
& One-Class Novelty Detection

Train

Test

(c) Multi-Class Novelty Detection

Test

(d) Open Set Recognition (f) Outlier Detection

All Observations are provided

dog

Train

dog cat fish

Train

dog cat fish

(a) Sensory Anomaly Detection

Train

Test

dog

Test

(e) Out-of-Distribution Detection

Generalized Out-of-Distribution Detection

ID 
fishOOD OOD

ID ID

ID

ID ID

ID OOD OOD

ID ID

ID

ID 
dog

ID 
cat

Fig. 2: Exemplar problem settings for tasks under generalized OOD detection framework. Tags on test images refer to model’s
expected predictions. (a) In sensory anomaly detection, test images with covariate shift will be considered as OOD. No
semantic shift occurs in this setting. (b) In semantic anomaly detection and one-class novelty detection, normality/ID images
belong to one class. Test images with semantic shift will be considered as OOD. No covariate shift occurs in this setting.
(c) In multi-class novelty detection, ID images belong to multiple classes. Test images with semantic shift will be considered
as OOD. No covariate shift occurs in this setting. (d) Open set recognition is identical to multi-class novelty detection
in the task of detection, with the only difference that open set recognition further requires in-distribution classification.
(e) Out-of-distribution detection is a super-category that covers semantic AD, one-class ND, multi-class ND, and open-set
recognition, which canonically aims to detect test samples with semantic shift without losing the ID classification accuracy. (f)

Outlier detection does not follow a train-test scheme. All observations are provided. It fits in the generalized OOD detection
framework by defining the majority distribution as ID. Outliers can have any distribution shift from the majority samples.

are related to each other by sharing similar motivations,
subtle differences exist among the sub-topics in terms of the
specific definition. However, existing studies often misuse
terms and even datasets, due to a lack of comprehensive
understanding of the relations among different problems.

In this survey, we for the first time clarify the similarities
and differences between these problems and present a unified
framework termed generalized OOD detection. Under this
framework, the five problems (i.e., AD, ND, OSR, OOD
detection, and OD) can be viewed as special cases or sub-
topics. We further conduct a thorough review of each sub-
topic and summarize recent technical developments. To
sum up, we make three contributions to the OOD detection
community:

1) A Unified Framework: For the first time, we system-
atically review five closely related topics of AD, ND,
OSR, OOD detection, and OD, and present a more
unified framework of generalized OOD detection. Un-
der this framework, the similarities and differences
of the five sub-topics can be compared and analyzed.
We hope our unification helps the community better
understand these problems and correctly position
their research in the literature.

2) A Comprehensive Survey: We conduct a thorough
review of the existing methods developed for each
sub-topic, with a particular focus on computer vi-
sion and deep learning-based approaches. Despite
targeting different problem settings, the methods
developed within each area can be generally catego-
rized into four groups: 1) density-based methods, 2)
reconstruction-based methods, 3) classification-based
methods, and 4) distance-based methods. We hope

our survey can help readers build a better under-
standing of the developments for each problem.

3) Future Research Directions: Finally, we draw read-
ers’ attention to some problems or limitations that
remain in the current generalized OOD detection
field. We conclude this survey with discussions
on open challenges and opportunities for future
research.

2 GENERALIZED OOD DETECTION

Framework Overview In this section, we introduce a uni-
fied framework termed generalized OOD detection, which
encapsulates five related sub-topics: anomaly detection (AD),
novelty detection (ND), open set recognition (OSR), out-of-
distribution detection (OOD), and outlier detection (OD).
These sub-topics can be similar in the sense that they all
define a certain in-distribution, with the common goal of
detecting out-of-distribution samples under the open-world
assumption. However, subtle differences exist among the sub-
topics in terms of the specific definition and properties of ID
and OOD data—which are often overlooked by the research
community. To this end, we provide a clear introduction and
description of each sub-topic in respective subsections (from
Section 2.1 to 2.5). Each subsection details the motivation,
background, formal definition, as well as relative position
within the unified framework. Applications and benchmarks
are also introduced, with concrete examples that facilitate
understanding. Thereafter, we conclude this section by
discussing and articulating the relationships among the sub-
topics (Section 2.6). We also note that AD contains 2 sub-tasks
of sensory AD and semantic AD, ND contains 2 sub-tasks of
one-class ND and multi-class ND. Therefore, we consider a

Yang, Jingkang, et al. "Generalized out-of-distribution detection: A survey." arXiv preprint arXiv:2110.11334 (2021).

먼저 스스로 무지를 깨우쳐야 성장할 수 있겠습니다.
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질문하며 성장하기

Input Image �

CNN

Extract
Features

OracleQuestion Proposals �#

Question Answering Module

How many red cubes

AnswerVQA Model �

Question Selection Module

- =
Prior state ��

Learning Progress of VQA Model �
State

How many red cubes

Valid?Question Relevance �

How many red cubes

qtype Question Generator �

Question Proposal Module

Agent

Answer (a)

Generated 
supervision

(�, q, a)

Selected 
Question (q)

Figure 3: Our approach to the learning-by-asking setting for VQA. Given an image I, the agent generates a diverse set
of questions using a question generator g. It then filters out “irrelevant” questions using a relevance model r to produce a list
of question proposals. The agent then answers its own questions using the VQA model v. With these predicted answers and
its self-knowledge of past performance, it selects one question from the proposals to be answered by the oracle. The oracle
provides answer-level supervision from which the agent learns to ask informative questions in subsequent iterations.

3. Learning by Asking

We now formally introduce the learning-by-asking
(LBA) setting. We denote an image by I, and assume there
exists a set of all possible questions Q and a set of all possi-
ble answers A. At training time, the learner receives as in-
put: (1) a training set of N images, Dtrain = {I1, . . . , IN},
sampled from some distribution ptrain(I); (2) access to an
oracle o(I, q) that outputs an answer a ∈ A given a ques-
tion q ∈ Q about image I; and (3) a small bootstrap set of
(I, q, a) tuples, denoted Binit.

The learner receives a budget of B answers that it can re-
quest from the oracle. Using these B oracle consultations,
the learner aims to construct a function v(a|I, q) that pre-
dicts a score for answer a to question q about image I. The
small bootstrap set is provided for the learner to initialize
various model components; as we show in our experiments,
training on Binit alone yields poor results.

The challenge of the LBA setting implies that, at train-
ing time, the learner must decide which question to ask
about an image and the only supervision the oracle pro-
vides are the answers. As the number of oracle requests is
constrained by a budget B, the learner must ask questions
that maximize (in expectation) the learning signal from each
image-question pair sent to the oracle.

At test time, we assume a standard VQA setting and
evaluate models by their question-answering accuracy. The
agent receives as input M pairs of images and questions,
Dtest = {(IN+1, qN+1), . . . , (IN+M , qN+M )}, sampled
from a distribution ptest(I, q). The images in the test set
are sampled from the same distribution as those in the train-
ing set:

∑

q∈Q ptest(I, q) = ptrain(I). The agent’s goal is
to maximize the proportion of test questions that it answers
correctly, that is, to maximize:

1

M

M
∑

m=1

I[argmax
a

v(a|IN+m, qN+m) = o(IN+m, qN+m)].

We make no assumptions on the marginal distribution over
test questions, ptest(q).

4. Approach

We propose an LBA agent built from three modules: (1)
a question proposal module that generates a set of ques-
tion proposals for an input image; (2) a question answering
module (or VQA model) that predicts answers from (I, q)
pairs; and (3) a question selection module that looks at
both the answering module’s state and the proposal mod-
ule’s questions to pick a single question to ask the oracle.
After receiving the oracle’s answer, the agent creates a tu-
ple (I, q, a) that is used as the online learning signal for all
three modules. Each of the modules is described in a sep-
arate subsection below; the interactions between them are
illustrated in Figure 3.

For the CLEVR universe, the oracle is a program inter-
preter that uses the ground-truth scene information to pro-
duce answers. As this oracle only understands questions
in the form of programs (as opposed to natural language),
our question proposal and answering modules both repre-
sent questions as programs. However, unlike [21, 24], we
do not exploit prior knowledge of the CLEVR programming
language in any of the modules; instead, it is treated as a
simple means that is required to communicate with the ora-
cle. See supplementary material for examples of programs
and details on the oracle.

When the LBA model asks an invalid question, the oracle
returns a special answer indicating (1) that the question was
invalid and (2) whether or not all the objects that appear in
the question are present in the image.

4.1. Question Proposal Module

The question proposal module aims to generate a diverse
set of questions (programs) that are relevant to a given im-
age. We found that training a single model to meet both
these requirements resulted in limited diversity of ques-
tions. Thus, we employ two subcomponents: (1) a question
generation model g that produces questions qg ∼ g(q|I);
and (2) a question relevance model r(I, qg) that predicts
whether a generated question qg is relevant to an image I.
Figure 2 shows examples of irrelevant questions that need
to be filtered by r. The question generation and relevance

13

Misra, Ishan, et al. "Learning by asking questions." Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition. 2018.

Learning by Asking Questions



24Copyright © 2022 ETRI. All Rights Reserved.

질문하며 성장하기
Visual Dialog Navigation 

Zhu, Yi, et al. "Self-Mo>vated Communica>on Agent for Real-World Vision-Dialog Naviga>on." Proceedings of the IEEE/CVF Interna>onal Conference on Computer Vision. 2021.
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질문하며 성장하기
Visual Dialog Navigation 

Method
Val Unseen

SR " OSR " SPL "
Random 1.76 11.93 1.01
R2R Teacher Forcing [1] 3.21 4.94 2.80
R2R Student Forcing [1] 12.88 4.20 8.07
RCM [27] 9.29 14.23 6.97
Self-Monitor [15] 8.15 11.28 6.44
FAST-Short [8] 10.08 20.48 6.17
Navigator-Pointer [19] 14.40 28.20 7.19
SCoA (Ours) 16.94 29.29 8.2

Table 5: Performance comparison on the unseen validation
of the REVERIE. Three metrics, including SR (%), OSR
(%) and SPL (%), are introduced.

Figure 5: The normalized number of asking questions v.s.

the joint reward at different navigation steps on the unseen
validation of CVDN during inference using the mixed path.

navigate in a progressive-suppressive manner. Specifically,
when our agent gets stuck in where to go, it tends to ask
more questions (e.g., point A). This results in the increase
of reward (e.g., point B), which indicates that our agent is
progressively approaching to the target. However, the in-
crease of reward on the contrary suppresses the agent to ask
questions (e.g., point C) to reduce the communication cost
since it has received rich knowledge about the surroundings
of its current position. However, as the agent goes beyond
the surroundings, more auxiliary information is necessary
to support the ongoing exploration. Otherwise, the agent
would pick up wrong actions, resulting in decreasing reward
(e.g., point D). To take back the right direction, the agent
again resorts to asking more questions (e.g., point E). Thus,
our SCoA implements the progressive-suppressive learning
in a closed loop until the agent reaches the target with less
communication cost.

Trajectory Visualization. We visualize one trajectory
example of our SCoA in Fig. 6 to see how our SCoA per-
forms the VDN task, along with the highest-score questions
and the joint rewards (see Fig. 3). As can be observed, the
agent receives negative rewards when it deviates from the

Figure 6: Trajectory visualization of our SCoA. The red dot-
ted line represents the trajectories the agent has traveled, and
the yellow star indicates the target position. The rectangle
box contains the asked questions by the agent and their corre-
sponding scene images. The digits denote the joint rewards
at each step. (Best view in color)

target position. Particularly, the agent gets confused at point
A, and then asks a question of “Should I go straight?”, which
however still leads the agent to a wrong direction thus a
penalty of -3 is received. The agent keeps asking questions
until choosing a right action at point B which returns a re-
ward of +1. Then, it stops communicating with the oracle at
point C since the agent knows the surroundings and starts
to move towards the target, during which, a reward of +2
is received. The ongoing moving leads the agent out of the
surrounds of point C. Thus, the agent asks one more question
of “Is the direction towards the door the correct direction” at
point D for its further exploration.

5. Conclusion

In this paper, we propose the Self-Motivated Commu-
nication Agent (SCoA) to tackle the challenging problem
of inflexible and annotation-dependent communication for
real-world vision-dialog navigation by learning to adaptively
decide whether and what to communicate with human to
acquire instructive information for guiding the navigation.
By jointly learning to communicate and navigate, SCoA ex-
plores to balance the communication benefit and cost. SCoA
significantly outperforms existing baseline methods without
dialog annotations, and even achieves comparable perfor-
mance to the counterparts that use rich dialog annotations as
inputs. Our SCoA gets rid of the limitation of expensive lan-
guage annotations and shows great potential for navigating
in real and open-ended environments.

1601

Zhu, Yi, et al. "Self-Motivated Communication Agent for Real-World Vision-Dialog Navigation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
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질문하며 성장하기
Vision-and-Dialog Navigation 

Figure 1: In Cooperative Vision-and-Dialog Navigation, two humans are given a hint about an object
to in the goal room. The Navigator moves (N ) through the simulated environment to find the goal
room, and can stop at any time to type a question (Q) to the Oracle. The Oracle has a privileged
view of the best next steps (O) according to a shortest path planner, and uses that information to
answer (A) the question. The dialog continues until the Navigator stops in the goal room.

2 Related Work and Background

Dialogs in CVDN begin with an underspecified, ambiguous instruction analogous to what robots
may encounter in a home environment (e.g., “Go to the room with the bed”). Dialogs include both
navigation and question asking / answering to guide the search, akin to a robot agent asking for
clarification when moving through a new environment. Table 1 summarizes how CVDN combines
the strengths and difficulties of a subset of existing navigation and question answering tasks.

Vision-and-Language Navigation. Early, simulator-based Vision-and-Language Navigation
(VLN) tasks use language instructions that are unambiguous—designed to uniquely describe the
goal—and fully specified—describing the steps necessary to reach the goal [8, 9]. In a more recent
setting, a simulated quadcopter drone uses low-level controls to follow a route described in natural
language [10]. In photorealistic simulation environments, agents can navigate high-definition scans
of indoor scenes [7] or large, outdoor city spaces [11]. In interactive question answering [12, 13]
settings, the language context is a single question (e.g., “What color is the car?”) that requires nav-
igation to answer. The questions serve as underspecified instructions, but are unambiguous (e.g.,
there is only one car whose color can be asked about). These questions are generated from tem-
plates rather than human language. In CVDN, input is an underspecified hint about the goal location
(e.g., “The goal room has a sink”) requiring exploration and dialog to resolve. Rather than single
instructions, CVDN includes two-sided, human-human dialogs.

Question Answering and Dialog. In Visual Question Answering (VQA), agents answer language
questions about a static image. These tasks exist for templated language on rendered images [14] and
human language on real-world images [15, 16, 17]. Later extensions feature two-sided dialog, where
a series of question-answer pairs provide context for the next question [18, 19]. Question answering
in natural language processing is a long-studied task for questions about static text documents (e.g.,
the Stanford QA Dataset [20]). Recently, this paradigm was extended to two-sided dialogs via
human-human, question-answer pairs about a document [21, 22, 23]. Questions in these datasets
are unambiguous: they have a right answer that can be inferred from the context. By contrast,
CVDN conversations begin with a hint about the goal location that is always ambiguous and requires
cooperation between participants. Contrasting VQA, because CVDN extends navigation the visual
context is temporally dynamic—new visual observations arrive at each timestep.

Task-oriented Dialog. In human-robot collaboration, robot language requests for human help can
be generated to elicit non-verbal human help (e.g, moving a table leg to be within reach for the
robot) [1]. However, humans may use language to respond to robot requests for help in task-oriented

2

Thomason, Jesse, Michael Murray, Maya Cakmak, and Luke ZeHlemoyer. "Vision-and-dialog navigaNon." In Conference on Robot Learning, pp. 394-406. PMLR, 2020.

https://youtu.be/BonlITv_PKw https://cvdn.dev

https://youtu.be/BonlITv_PKw
https://cvdn.dev/
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Large Language Models…
Robot: Hi there, I’m a robot operating in an office kitchen. 

Robot: You can ask me to do various tasks and I’ll tell you the sequence of 
actions I would do to accomplish your task. 

Human: How would you hold the snickers? 

Robot: 1. pick up the snickers, 2. done. 

Human: How would you put the trailmix here? 

Robot: 1. put down the trailmix, 2. done. 

Human: How would you put a water bottle and an oatmeal next to the 
microwave? 
Robot: 1. find a water bottle, 2. pick up the water bottle, 3. go to microwave, 4. 
put down the water bottle, 5. find an oatmeal, 6. pick up the oatmeal, 7. go to 
the microwave, 8. put down the oatmeal, 9. done. 

Ahn, Michael, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn et al. 
"Do as i can, not as i say: Grounding language in robotic affordances." arXiv preprint arXiv:2204.01691 (2022).
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Large Language Models…
Human: How would you put the coke can down on the far counter? 
Robot: 1. find a coke can, 2. pick up the coke can, 3. go to the far 
counter, 4. put down the coke can, 5. done.

Human: I am thirsty. How would you help me?

Robot: 1. find a water bottle, 2. pick up the water bottle, 3. bring it to 
you, 4. put down the water bottle, 5. done.

Ahn, Michael, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn et al. 
"Do as i can, not as i say: Grounding language in robotic affordances." arXiv preprint arXiv:2204.01691 (2022).
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Large Language Models…
Human: How do you explain the process of making a soup? Robot: I 
would 1. 

1. get a pot, 2. fill it with water, 3. put it on the stove, 4. turn on the 
stove, 5. wait for the water to boil, 6. add the soup mix, 7. stir, 8. wait 
for the soup to finish cooking, 9. turn off the stove,

Ahn, Michael, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn et al. 
"Do as i can, not as i say: Grounding language in robotic affordances." arXiv preprint arXiv:2204.01691 (2022).
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무지를 깨우치고 질문하며 성장하는 AI
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정리
•지금 로봇 지능의 특성은 폐쇄(Closed)되고 고정(Static)됨

•로봇 운영 환경과 상황은 다양하고, 끊임없이 변화 (Continual 
Domain Change)

•클라우드 로봇 지능: 도메인에 지속 적응 (Continual Domain 
Adaptation)

•열린 세계 인지와 성장: 무지를 깨닫고 배움 (OOD Detection 
and Learning-by-Asking)



감사합니다.
실환경에서 잘 동작하는 기술을 넘어,
실환경에서 잘 학습하는 기술을!

An important challenge for machine learning is not necessarily 
finding solutions that work in the real world, but rather
finding stable algorithms that can learn in real world. 

(Timothée Lesort, 2020)


