Foundation Models for Robots

2023.11.16

@GIST School of Integrated Technology

Minsu Jang (minsu@etri.re.kr)

Electronics and Telecommunications Research Institute

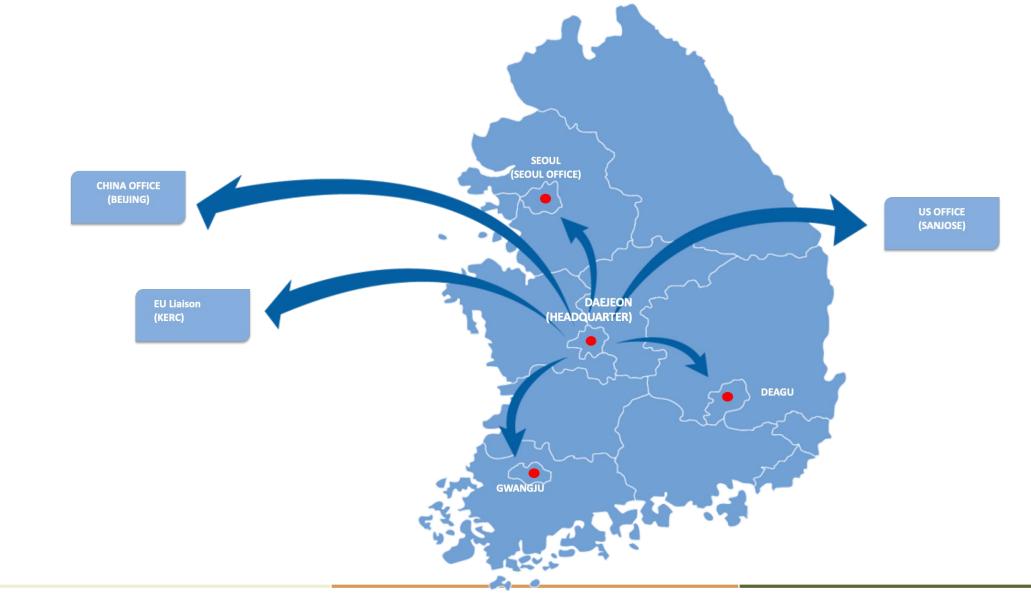
Table of Content

- Introduction to ETRI
- What is Foundation Model?
- Foundation Models for Robots
 - Google SayCan, Inner Monologue, RT-1, PaLM-E, RT-2, RT-X
 - MS ChatGPT for Robotics, Code as Policies
- Research Issues & Dataset for Robot Foundation Models
- Research in ETRI
- Summary

Introduction to ETRI

Video link: https://www.youtube.com/watch?v= xxtuBI54DA&t=137s

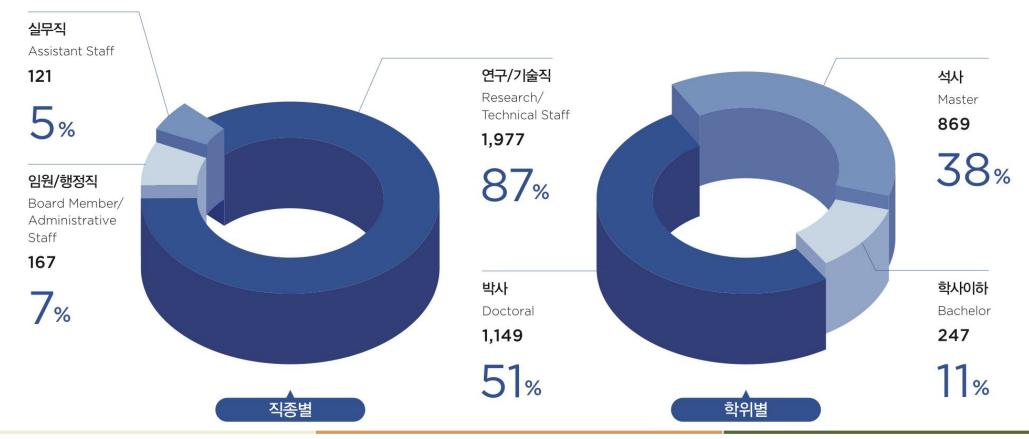
ETRI Location



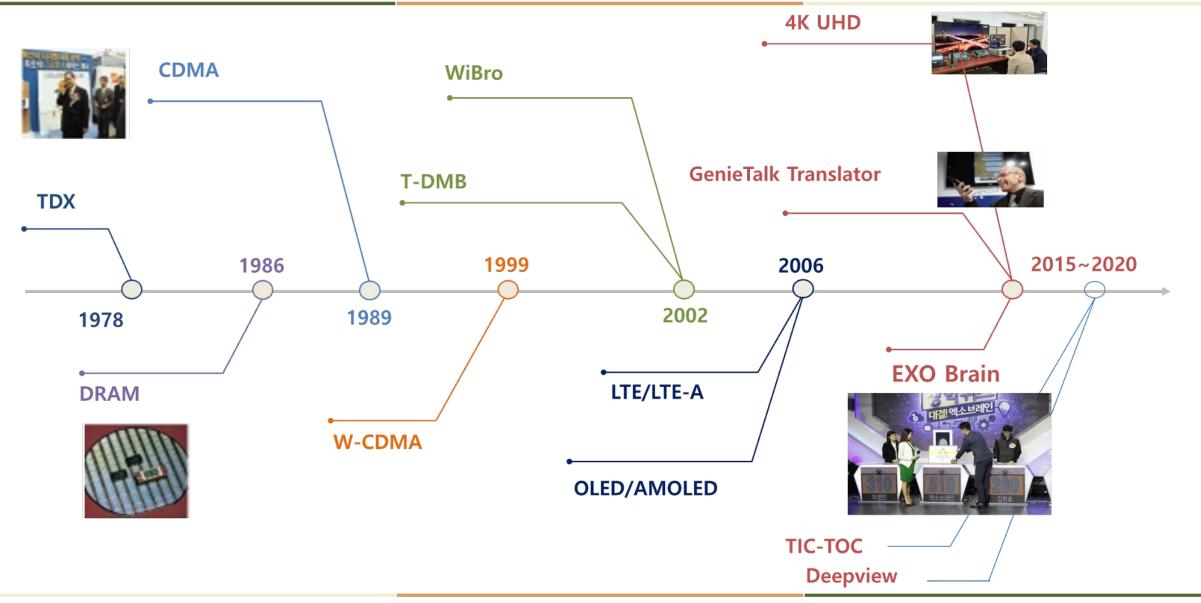
ETRI People

총 인원수(명) Total No. of Employees

2,265



Major Achievements



Research Organization

Artificial Intelligence, Computing	Superintelligence	Hyper-Reality Metaverse		
 Div. Future Computing Research Div. AI SoC Research Div. Cyber Security Research Div. Quantum Technology Research 	 Div. Intelligence Information Research Div. Mobility Robot Research Div. Creative & Basic Technology Research Div. Materials and Components Research 	 Div. Media Research Div. Content Research Div. Reality Devices Research 		
Telecommunications	Digital Convergence	ICT Strategy		
 Mobile Communication Research Network Research Radio Research Satellite Communication Research Photonic/Wireless Devices Research 	 Div. Air Mobility Research Div. Industrial Energy Convergence Research Div. Digital Biomedical Research Div. Defense & Safety Convergence Research 	 Div. Technology Strategy Research Div. Technology Policy Research Div. Standards & Open Source Research 		

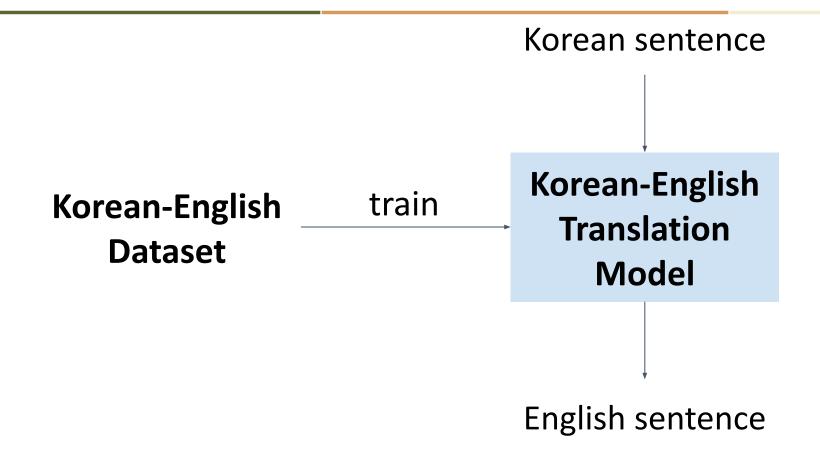
ETRI Companies

What is Foundation Model?

Definition

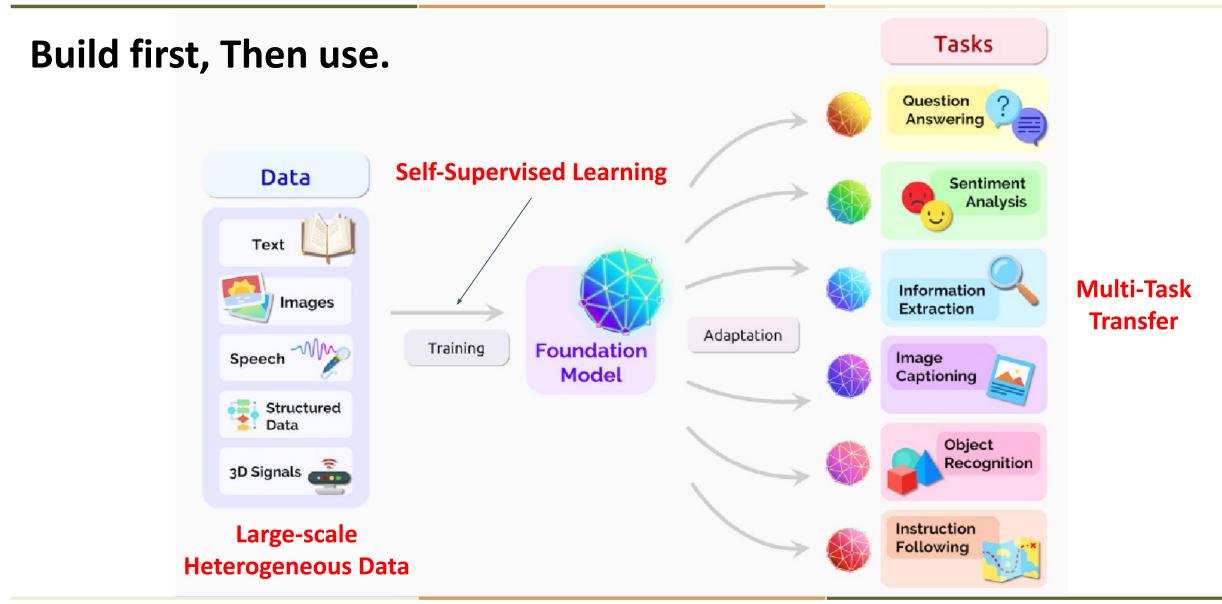
- A foundation model is any model that is,
 1) trained on broad data at scale based on deep neural networks,
 2) self-supervised or semi-supervised learning
 3) can be adapted (e.g., fine-tuned) to a wide range of downstream tasks.
- The sheer scale and scope of foundation models over the last few years have stretched our imagination of what is possible.
- GPT-3 has 175 billion parameters and can be adapted via natural language prompts to do a passable job on a wide range of tasks despite not being trained explicitly to do many of those tasks.

Traditional AI Models



(Mainly) "Supervised Learning" "Can do only the trained things" (Task first, Then build)

Foundation Models



Characteristics of Foundation Models

Multitask & Generalization

"Can effectively be adapted to novel tasks"

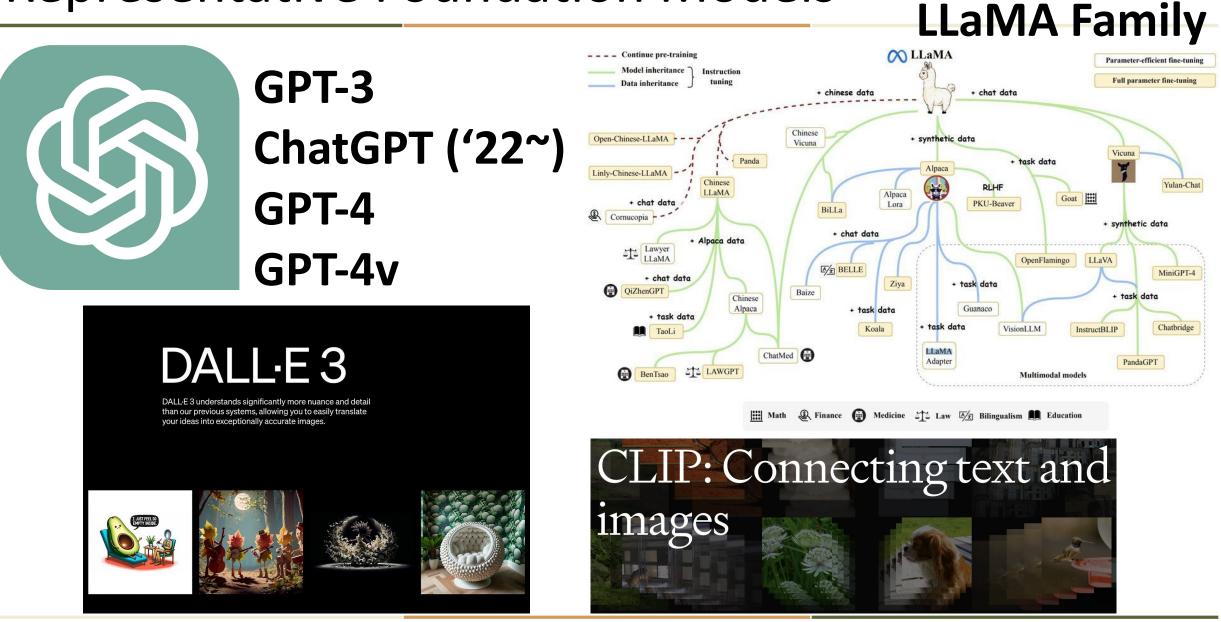
In-Context Learning

"With **no further training** e.g. fine-tuning"

- Zero-Shot, Few-Shot *"with task descriptions or with some task examples"*
- Prompt Engineering

Emergent Capabilities from Larger Models

"An ability is emergent if it is not present in smaller models but is present in **larger models**."

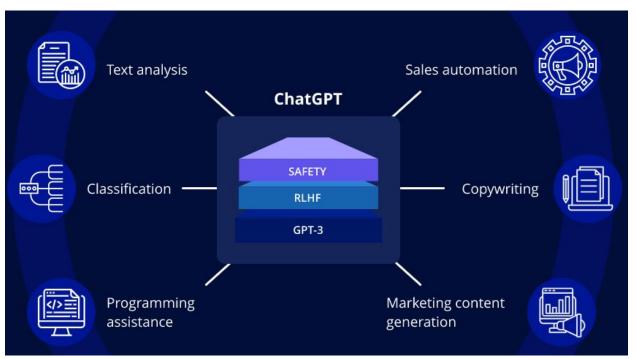


Representative Foundation Models

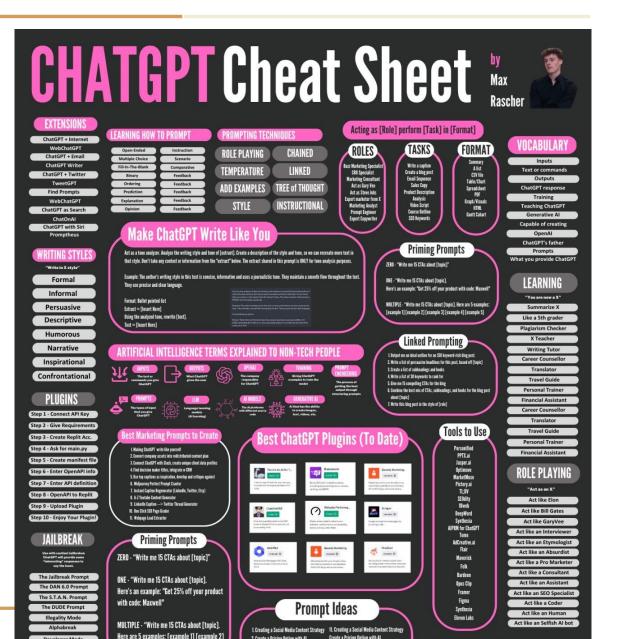
© Minsu Jang, ETRI, 2023

What is Foundation Model?

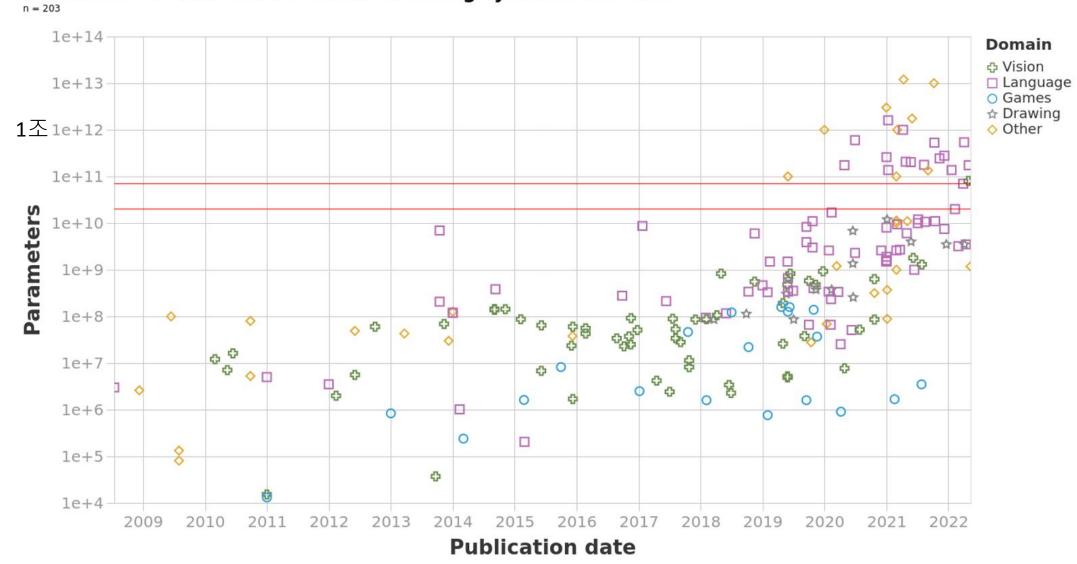
What ChatGPT can do...



(https://www.leewayhertz.com/chatgpt-enterprise-usecases-and-solutions/)

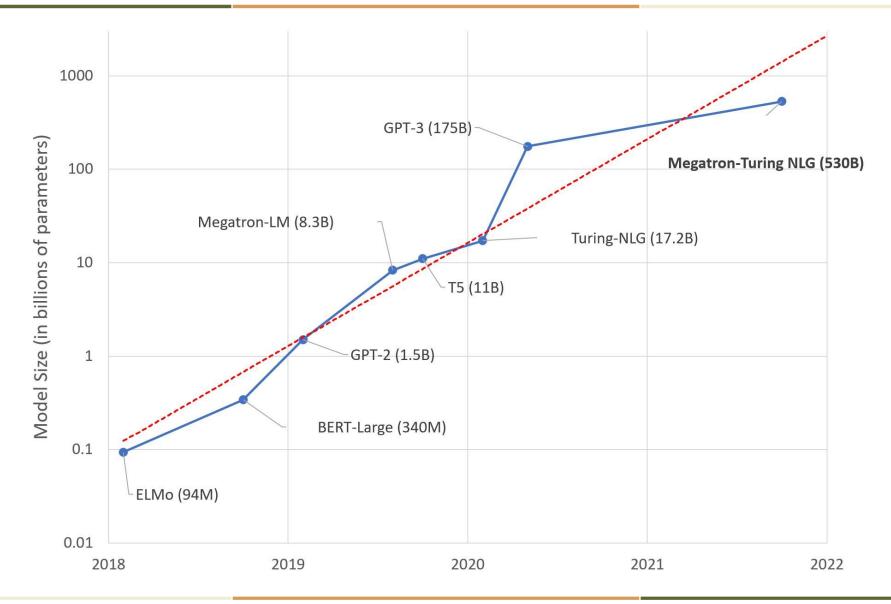


Model Size

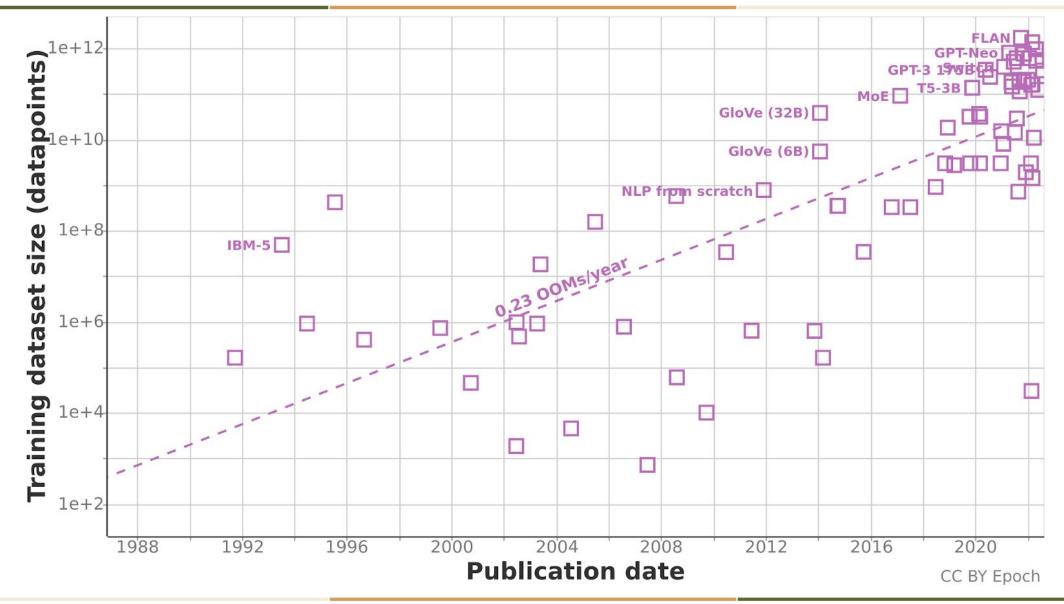


© Minsu Jang, ETRI, 2023 <u>https://epochai.org/blog/machine-learning-model-sizes-and-the-parameter-gap</u>

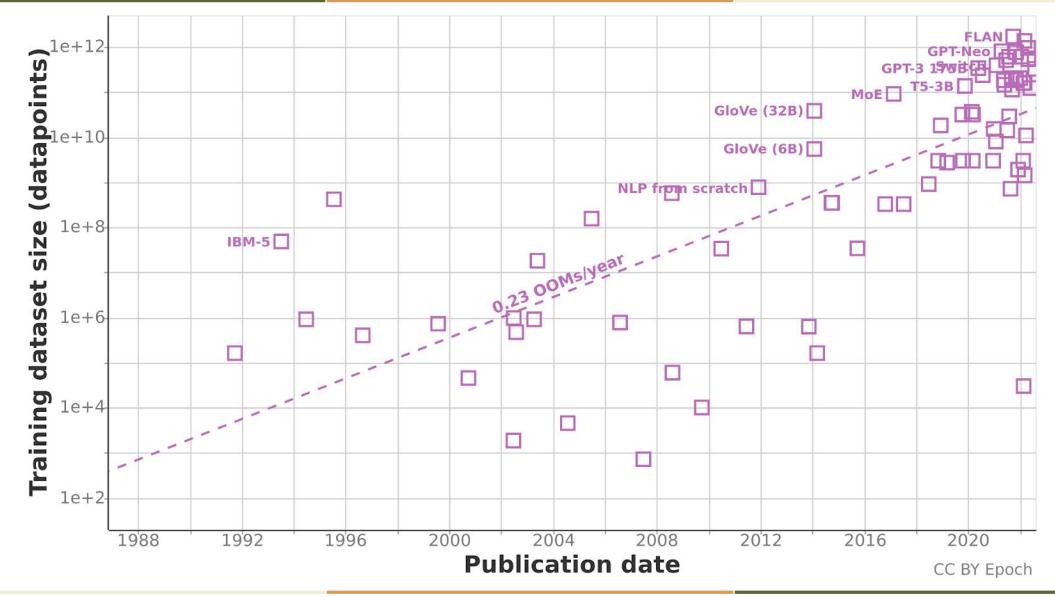
Model Size



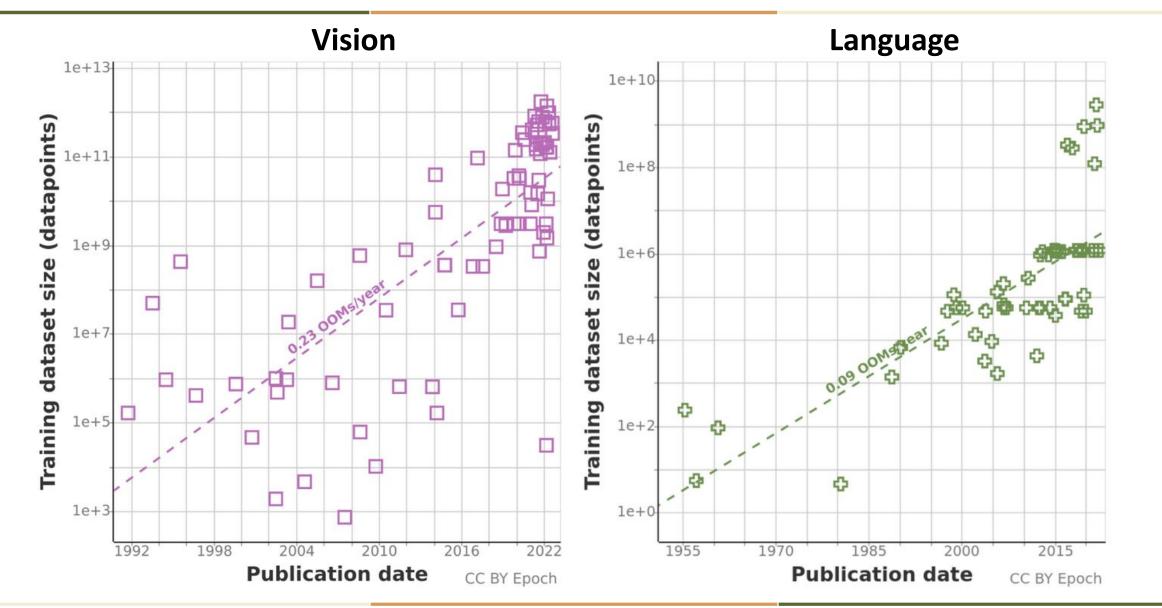
Data Size (Vision)



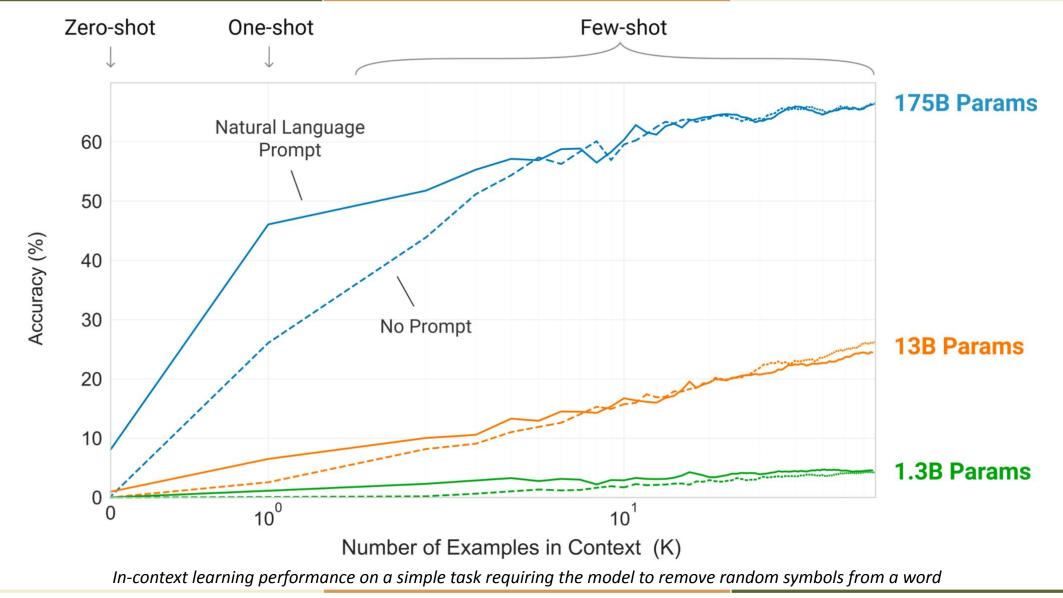
Data Size (Language)



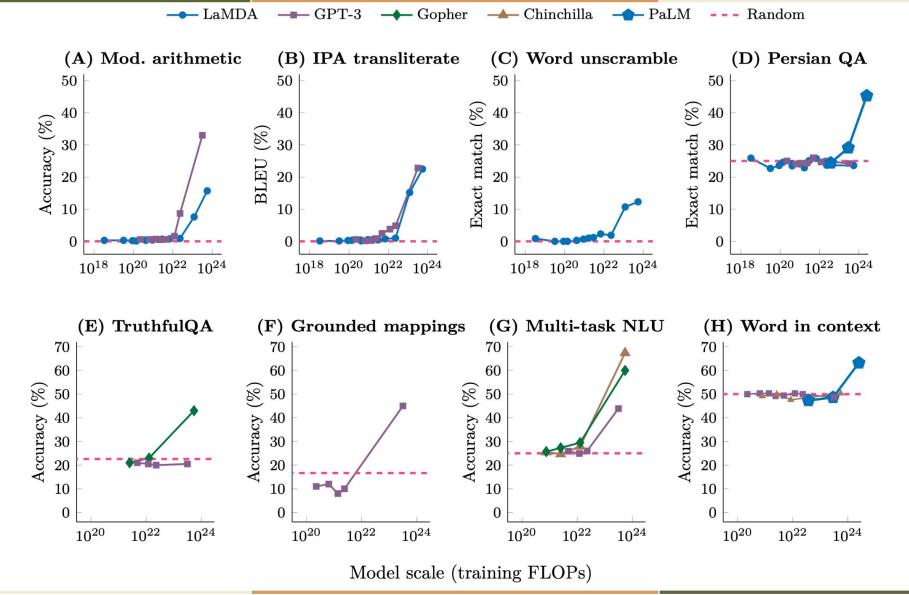
Data Size Growth



Emergence of Capabilities



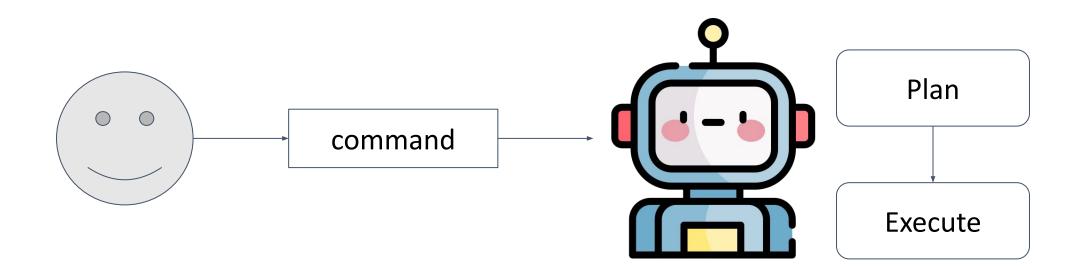
Emergence of Capabilities



Studies on Foundation Models

- Prompt Engineering
 - Chain-of-Thought, Tree-of-Thought, React, Emotion Prompt etc.
- Emergent capabilities
 - Planning, mathematical reasoning etc.
- Optimizations
 - Size, Speed, Context Length etc.
- Extensions
 - Retrieval Augmented Generation
 - Vision Language Models
- Applications
 - Education, Law, Medical, Entertainment, Robotics etc.

Foundation Models for Robots

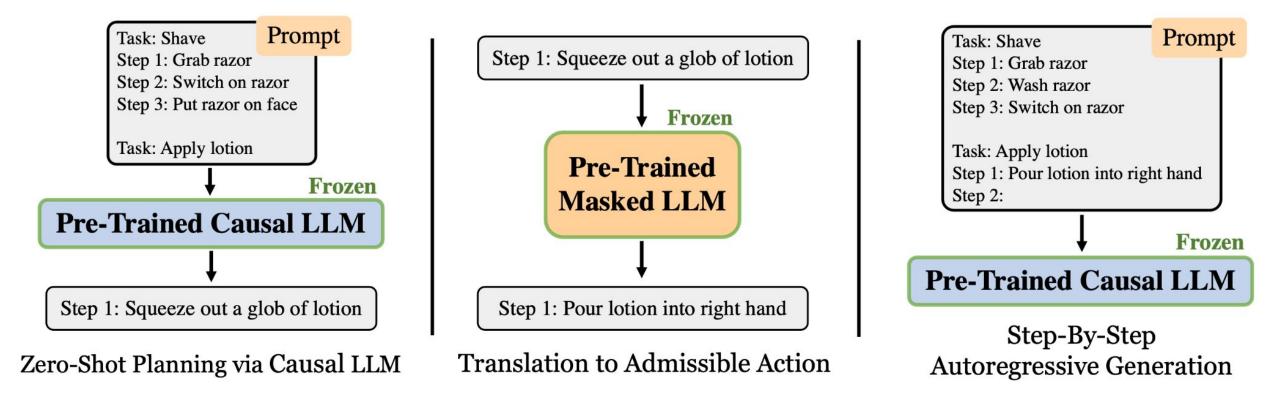


Models

Madal	Creator	Year	Description	Openness		
Model			Description	model	code	data
SayCan	Robotics at Google, Everyday Robotics	2022	Task Planning from Natural Language Commands	Х	0	Х
ChatGPT for Robotics	Microsoft	2023	Robot Programming from Natural Language Commands	Х	0	Х
RT-1	Google Deepmind	2022	Robot Control from Vision-Language-Action	0	0	0
PaLM-E	Robotics at Google, TU Berlin, Google Research	2023	Task Planning from Vision-Language	Х	Х	Х
RT-2	Google Deepmind	2023	Robot Control from Vision-Language-Action	Х	Х	Х

Language Models as Zero-Shot Planners

- The paper shows a surprising finding that pre-trained causal LLMs can decompose high-level tasks into sensible mid-level action plans.
- Mapping each step into executable actions



© Minsu Jang, ETRI, 2023 Huang, Wenlong, et al. "Language models as zero-shot planners: Extracting actionable knowledge for embodied agents." International Conference on Machine Learning. PMLR, 2022. 26

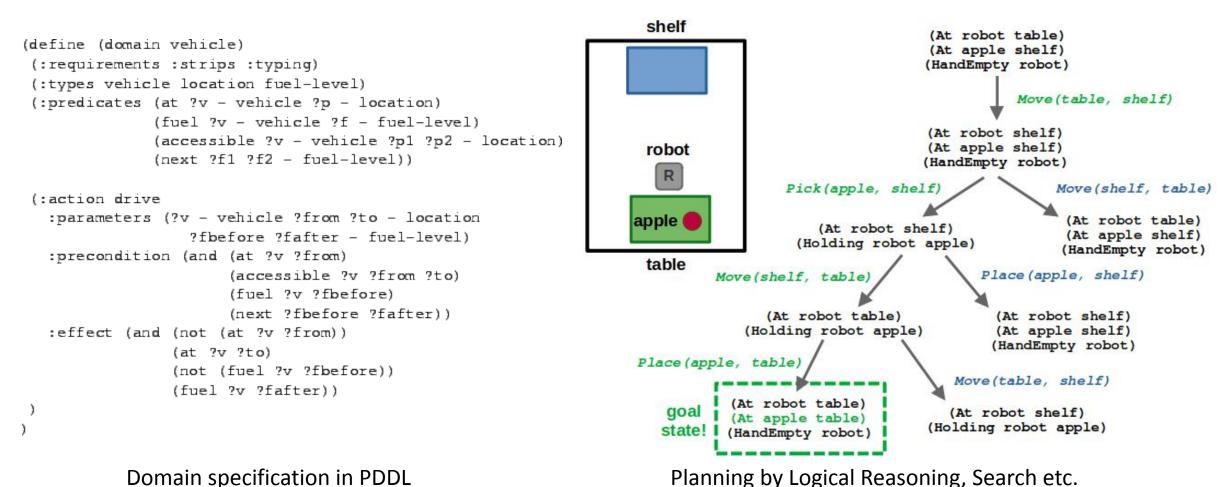
Overview

This video has audio Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents Wenlong Huang Pieter Abbeel Deepak Pathak* Igor Mordatch* UC Berkeley UC Berkeley CMU Google

Video link: <u>https://www.youtube.com/watch?v=CkyugWI3_fc</u>

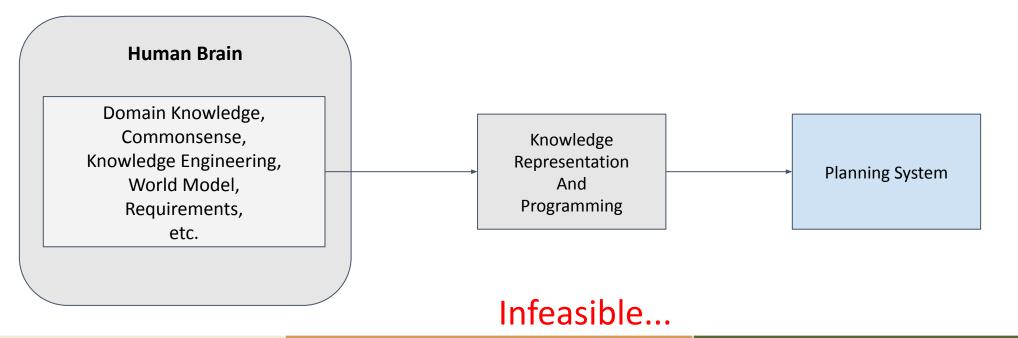
Task Planning in the Past...

- You define a task domain including predicates, actions.
- You give a command by formally specifying objects and a goal.



Task Planning in the Past

- The planning models should be **engineered by human**.
 - The world model is in the human minds.
- The model is **closed-world**.
 - The model can be extended only with human engineering.
- Logical and semantic errors occur, and they are very hard to debug.
- Interaction needs **dedicated translations** from $NL \rightarrow FL$ and $FL \rightarrow NL$.

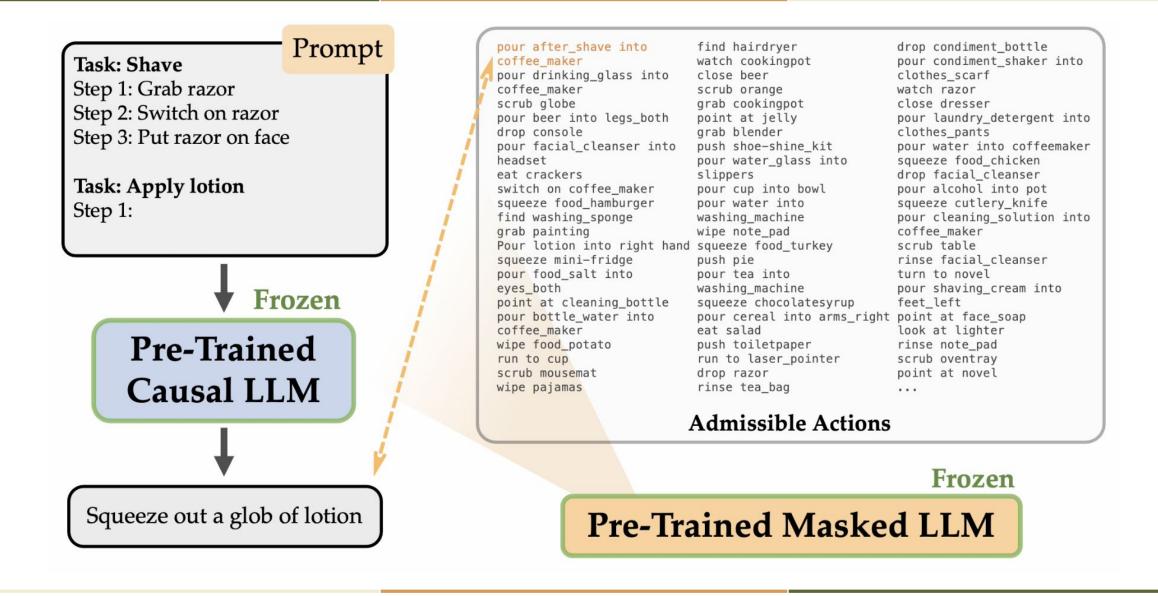


Plans from different language models

	GPT-3 175B	Translated GPT-3 175B	Task: Complete Amazon Turk Surveys
Human Task: Throw away paper Step 1: Walk to home office Step 2: Walk to desk Step 3: Find desk Step 4: Turn to desk Step 5: Find chair Step 6: Sit on chair Step 7: Find check	Task: Throw away paperStep 1: Walk to home officeStep 2: Walk to wastebasketStep 3: Find wastebasketStep 4: Grab wastebasketStep 5: Walk to deskStep 6: Drop paper in wastebasketStep 6: Drop paper in wastebasketStep 1: Walk to bathroomStep 2: Walk to sinkStep 3: Find toothbrushStep 4: Pick up toothbrushStep 5: Put toothbrush in mouthStep 6: Move brush around mouth	Task: Throw away paper Step 1: Walk to home office Step 2: Walk to table Step 3: Find table Step 4: Turn to table Step 5: Find paper Step 6: Grab paper Step 7: Walk to trashcan Step 8: Open trashcan Step 9: Put paper on trashcan	Walk to Home Office Walk to Home Office Switch on Computer
Step 8: Grab check Step 9: Squeeze check		Step 10: Close trashcan	Task: Get Glass of Milk
Step 10: Stand up Step 11: Walk to trashcan Step 12: Put check on trashcan		Translated Codex 12B Task: Brush teeth Step 1: Walk to bathroom	
GPT-2 1.5B	for two minutes	Step 2: Open door Step 3: Walk to sink	Walk to Kitchen Open Fridge
Task: brush teethbrush into sinkStep 1: Go to bathroomStep 8: Turn on water in sink rinse brush for one m Step 9: Turn off water in sink	 Step 7: Spit out toothpaste and brush into sink Step 8: Turn on water in sink and rinse brush for one minute Step 9: Turn off water in sink and return brush to cupboard 	Step 4: Put pot on sink Step 5: Put brush on toothbrush Step 6: Turn to toothpaste Step 7: Put toothpaste on toothbrush Step 8: Put teeth on toothbrush	Grab Milk Close Fridge

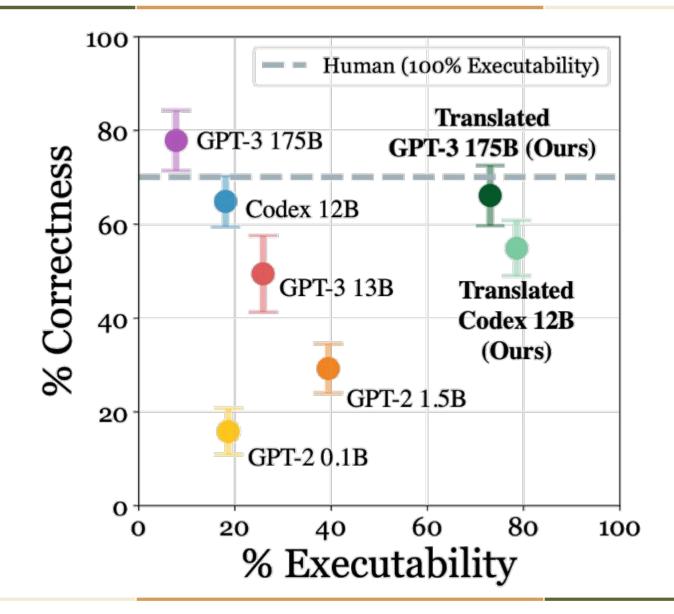
© Minsu Jang, ETRI, 2023 Huang, Wenlong, et al. "Language models as zero-shot planners: Extracting actionable knowledge for embodied agents." International Conference on Machine Learning. PMLR, 2022. 30

Promoting Executability



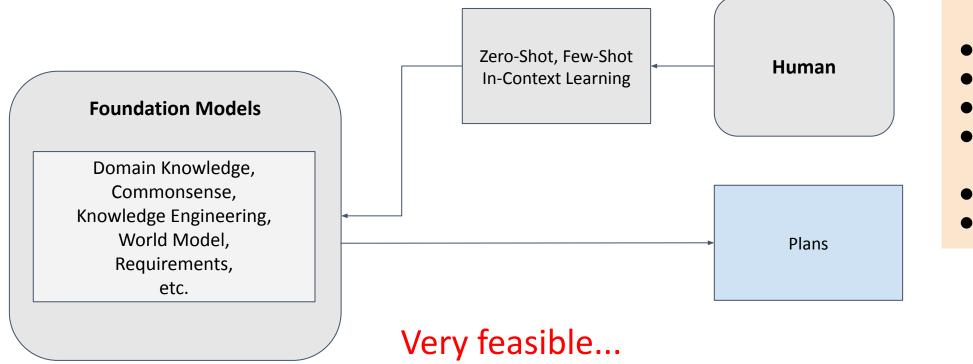
Foundation Models for Robots \rightarrow Language Models as Zero-Shot Planners

Performance for different models



Task Planning Today

- The planning models are **embedded somehow in the foundation models**.
 - **How** to do a task in which conditions... & **why** should it be done.
- The model is **open-world**.
- Interaction in natural language!
- Errors occur, very hard to debug.



To the Next Level!

- Executability
- Multi-modality
- Grounded reasoning
- Connecting Low-level skills
- Uncertainty
- etc.

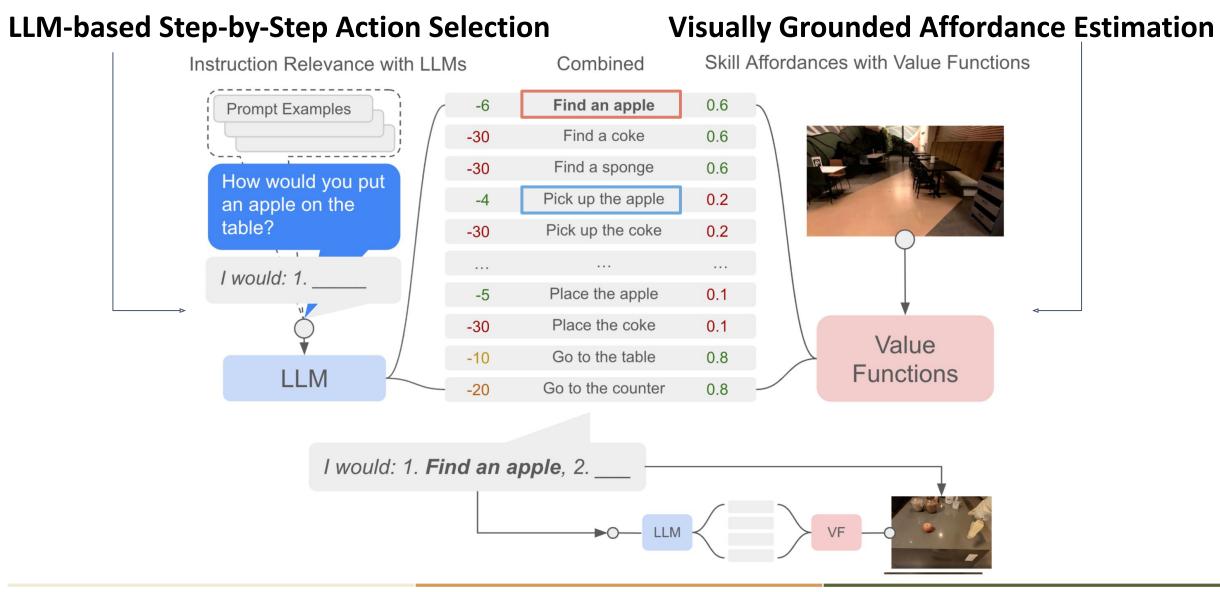
Google SayCan (2022)

- Long-Horizon Task Planning using a LLM (GPT-3, FLAN, PaLM)
- Promoting Plan Validity by Visual Grounding and Affordance Estimation

video link: https://say-can.github.io/img/demo_sequence_compressed.mp4

Foundation Models for Robots → Google SayCan

System Overview



System Overview

Algorithm 1 SayCan

Given: A high level instruction i, state s_0 , and a set of skills Π and their language descriptions ℓ_{Π} 1: $n = 0, \pi = \emptyset$ 2: while $\ell_{\pi_{n-1}} \neq$ "done" do 3: $\mathcal{C} = \emptyset$ for $\pi \in \Pi$ and $\ell_{\pi} \in \ell_{\Pi}$ do 4: $p_{\pi}^{\text{LLM}} = p(\ell_{\pi}|i, \ell_{\pi_{n-1}}, ..., \ell_{\pi_0})$ 5: ▷ Evaluate scoring of LLM $p_{\pi}^{\text{affordance}} = p(c_{\pi}|s_n, \ell_{\pi})$ 6: ▷ Evaluate affordance function $p_{\pi}^{\text{combined}} = p_{\pi}^{\text{affordance}} p_{\pi}^{\text{LLM}}$ 7: $\mathcal{C} = \mathcal{C} \cup p_{\pi}^{\text{combined}}$ 8: end for 9: $\pi_n = \arg \max_{\pi \in \Pi} \mathcal{C}$ 10: Execute $\pi_n(s_n)$ in the environment, updating state s_{n+1} 11: n = n + 112: 13: end while

Foundation Models for Robots \rightarrow Google SayCan

SayCan Prompt

Role Description Context Info.	Robot: Hi there, I'm a robot operating in an office kitchen. You can ask me to do various tasks and I'll tell you the sequence of actions I would do to accomplish your task. The following objects are in the scene: 7up, apple, tea, multigrain chips, kettle chips, jalapeno chips, rice chips, coke, grapefruit soda, Pepsi, Redbull, energy bar, lime soda, sponge, and water bottle. The following locations are in the scene: close counter, far counter, table, you, trash, bowl.
	Human: Hold the sponge Robot: 1. pick up the sponge, 2. done.
	Human: Put the kettle chips here Robot: 1. put down the kettle chips, 2. done.
In-Context Examples	Human: Move the grapefruit drink from the table to the close counter Robot: 1. find a grapefruit soda, 2. pick up the grapefruit soda, 3. go to the counter, 4. put down the grapefruit soda, 5. done.
	Human: Bring me some snacks Robot: 1. find a jalapeno chips, 2. pick up the jalapeno chips, 3. bring it to you, 4. put down the jalapeno chips, 5. find an apple, 6. pick up the apple, 7. bring it to you, 8. put down the apple, 9. done.
	Human: Bring me something that isn't a fruit Robot: 1. find an energy bar, 2. pick up the energy bar, 3. bring it to you, 4. put down the energy bar, 5. Done.
Plan Request	Human: Put the rice chips in the bowl and then move the tea to the table Robot: 1.

Evaluation: Environments and Instructions

Frontal view, Pre-manipulation pose

Instruction Family	Num	Explanation	Example Instruction
NL Single Primitive	15	NL queries for a single primitive	Let go of the coke can
NL Nouns	15	NL queries focused on abstract nouns	Bring me a fruit
NL Verbs	15	NL queries focused on abstract verbs	Restock the rice chips on the far counter
Structured Language	15	Structured language queries, mirror NL Verbs	Move the rice chips to the far counter.
Embodiment	11	Queries to test SayCan's understanding of the	Put the coke on the counter. (starting
		current state of the environment and robot	from different completion stages)
Crowd-Sourced	15	Queries in unstructured formats	My favorite drink is redbull, bring one
Long-Horizon	15	Long-horizon queries that require many steps	I spilled my coke on the table, throw it
		of reasoning	away and bring me something to clean

© Minsu Jang, ETRI, 2023

Evaluation: Metrics

- Plan Success Rate
 - This measures **whether the skills selected by the model are correct** for the instruction, regardless of whether or not they actually successfully executed.
 - We ask 3 human raters to indicate whether the plan generated by the model can achieve the instruction, and if 2 out of 3 raters agree that the plan is valid, it is marked a success.

Execution Success Rate

- This measures whether the full PaLM-SayCan system actually performs the desired instruction successfully.
- We ask 3 human raters to watch the robot execution. The raters are asked to answer the question "whether the robot achieves the task specified by the task string?" We mark an execution successful if 2 out of 3 raters agree that it is successful.

Performance

	Mock Kitchen		litchen	Kitchen		No Affordance		No	LLM
	ĺ	PaLM-	PaLM-	PaLM-	PaLM-	No VF	Gen.	BC NL	BC USE
		SayCan	SayCan	SayCan	SayCan				
Family	Num	Plan	Execute	Plan	Execute	Plan	Plan	Execute	Execute
NL Single	15	100%	100%	93%	87%	73%	87%	0%	60%
NL Nouns	15	67%	47%	60%	40%	53%	53%	0%	0%
NL Verbs	15	100%	93%	93%	73%	87%	93%	0%	0%
Structured	15	93%	87%	93%	47%	93%	100%	0%	0%
Embodiment	11	64%	55%	64%	55%	18%	36%	0%	0%
Crowd Sourced	15	87%	87%	73%	60%	67%	80%	0%	0%
Long-Horizon	15	73%	47%	73%	47%	67%	60%	0%	0%
Total	101	84%	74%	81%	60%	67%	74%	0%	9%

Sample Execution

Human: Bring me the rice chips from the drawer.

Robot: I would

- 1. Go to the drawer
- 2. Open the drawer
- 3. Take the rice chips out of the drawer
- 4. Close the drawer
- 5. Pick up the rice chips
- 6. Bring it to you
- 7. Put down the rice
- chips
- 8. Done

New Capabilities

- Easily expandable by extending the skill set
- Improved performance simply by prompt engineering

CHAIN-OF-THOUGHT PLANNING ROLLOUT WITH PALM-SAYCAN.

Human: Can you bring a fruit-flavored drink without caffeine?

Explanation: The user has asked for a drink that is fruit-flavored and does not have caffeine, I will bring the lime soda.

Robot: 1. find a lime soda, 2. pick up the lime soda, 3. bring it to you, 4. put down the lime soda, 5. done

Human: Bring me the spicy chips.

Explanation: The user has asked for chips that are spicy, I will bring the Jalapeno chips.

Robot: 1. find the jalapeno chips, 2. pick up the jalapeno chips, 3. bring it to you, 4. put down the jalapeno chips, 5.done

Human: The snack is too small, bring me something more filling.

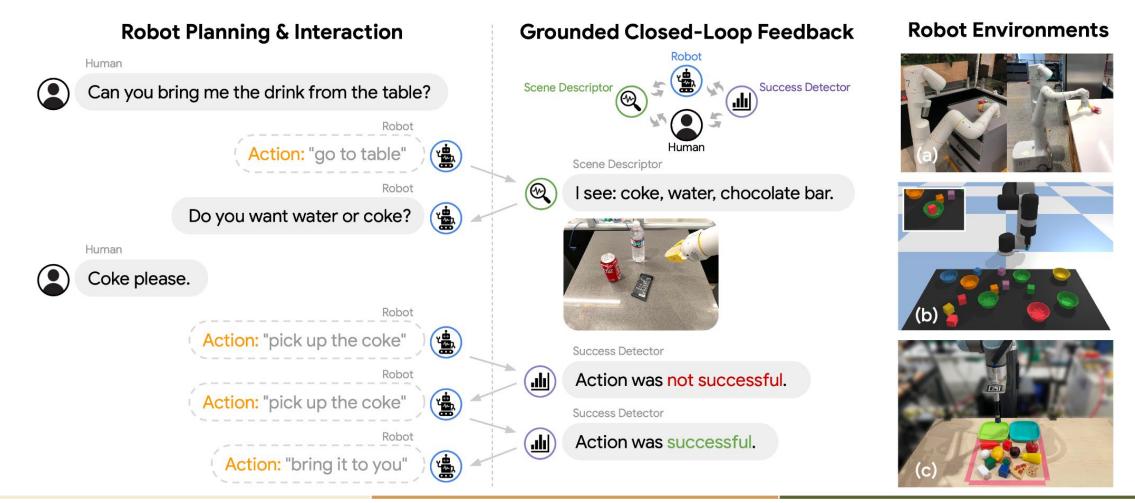
Explanation: The user has asked for a snack that is more filling, I will bring the multigrain chips.

Robot: 1. find the multigrain chips, 2. pick up the multigrain chips, 3. bring it to you, 4. put down the multigrain chips, 5. done

• Multilingual commands can be processed

Google Inner Monologue (2022)

 Improving performance of LLM-based planner by feedback from vision and human

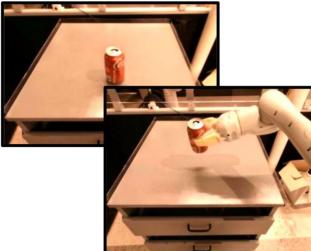


© Minsu Jang, ETRI, 2023 Huang, Wenlong, et al. "Inner monologue: Embodied reasoning through planning with language models." arXiv preprint arXiv:2207.05608 (2022).

Foundation Models for Robots → Inner Monologue

Sources of feedback

- Passive Scene Description
- Success Detection
- Active Scene Description



Success Detection in context

Robot Action: Pick up coke Success: True Robot Action: Bring it to user

Passive Scene Description in context:

Robot Action: Go to table Scene: lime soda, coke, energy bar Robot Action: pick up energy bar

Active Scene Description in context:

Robot Action: Go to drawers **Robot Ask: Is the drawer open? Human: The drawer is closed.** Robot Action: Open the drawer

Experiments

Human: move all the blocks into mismatching bowls. (Sim) Scene: There is a yellow block, yellow bowl, blue block, blue bowl, red block, red bowl, Tabletop Rearrangement Robot: My goal is ['yellow block in blue bowl', 'red block in yellow bowl', 'blue block in red bowl']. Robot: Pick up yellow block and place it in blue bowl. Scene: You achieved ['yellow block in blue bowl'] Robot: I need red block in yellow bowl, blue block in red bowl Robot: Pick up red block and place it in yellow bowl.

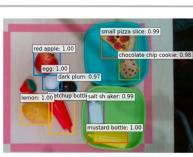
Human: Sort fruits and condiments in different plates (Real) Scene: objects = [apple, egg, plum, pizza, cookie, salt, mustard, ketchup, lemon] Scene: occluded objects = [] rrangement Robot: robot.pickplace(strawberry, green plate) Robot: robot.pickplace(salt shaker, blue plate) Success Detector: False. Robot: robot.pickplace(salt shaker, blue plate)

Robot: robot.stop()

Robot: go to the table

Robot: Pick up coke

Robot: Pick up coke



Object Recognition

Achieved

Object Recognition (w/ Potential Occlusion)

InstructGPT for planning

Scripted Modules for feedbacks

- InstructGPT for planning
- **MDETR-based detector** for Scene Description
- Heuristics for Success Detection
- PaLM for planning
- Human-provided Scene Description
- Vision-based Success Detection

Tabletop

Rea

Robot: Bring it to you Robot: Put down the coke Robot: Done

Success Detector: False

Human: Bring me a drink from the table Scene: I see a coke and lime soda Robot: What kind of drink would you like? Human: Something with caffeine

Object Recognition

Action: put

the egg on

the blue plate

Success Detection

Pick up chocolate bar

Pick up coke

•••

Pick up water

Open drawe

Affordance Grounding

Results

					+LLM	+Inner Mo	nologue
		Tasks	CLIPort	+oracle	Object	Object + Success	Object + Scene
Simulation	Seen Tasks	"Pick and place" "Stack all the blocks" "Put all the blocks on the [x] corner/side"	24.0% 2.0% 2.0%	74.0% 32.0% 32.0%	80.0% 4.0% 30.0%	90.0% 10.0% 28.0%	94.0% 26.0% 30.0%
Simulation		"Put all the blocks in the [x] bowl"	32.0%	94.0%	52.0%	46.0%	56.0%
	Unseen Tasks	"Put all the blocks in different corners" "Put the blocks in their matching bowls" "Put the blocks on mismatched bowls" "Stack all the blocks on the [x] corner/side"	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	20.0% 56.0% 62.0% 0.0%	20.0% 70.0% 76.0% 4.0%	26.0% 82.0% 86.0% 6.0%

	LLM	+Inner Monologue				
Task Family	Object	Object	Success	Object + Success		
Finish 3-block stacking Sort fruits from bottles Total	20% 20% 20%	40% 50% 45%	40% 40% 40%	100% 80% 90%		

Real-World (TableTop)

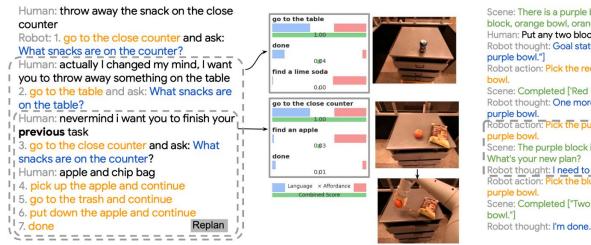
Real-World (Kitchen)

		+Inner Monologue		
Task Family	SayCan	Success	Object + Success	
No Disturbances				
Manipulation	50.0%	62.5%	75.0%	
Mobile Manipulation	50.0%	50.0%	75.0%	
Drawers	83.3%	83.3%	100.0%	
With Disturbances				
Manipulation	12.5%	25.0%	33.3%	
Mobile Manipulation	0.0%	25.0%	75.0%	
Drawers	0.0%	44.4%	44.4%	
Total	30.8%	48.7%	60.4%	

© Minsu Jang, ETRI, 2023

bowl.

Emergent Capabilities



(a) Continued Adaptation to New Instructions

Scene: There is a yellow bowl, yellow block, blue block, blue bowl

Human: Put the blocks in the bowls with mismatching colors. Robot thought: Goal state is ["Yellow block is in the blue bowl.", "Blue block is in the yellow bowl."] Robot action: Pick the yellow block and place it in the blue Scene: Completed ["Yellow block is in the blue bowl."] Robot thought: Blue block is not in the yellow bowl. Human: 我改变主意了,请把蓝色方块也放到蓝色的碗里面。 Robot thought: Goal state is ["Yellow block is in the blue Ibowl.". "Blue block is in the blue bowl."] Robot action: Pick the blue block and place it in the blue Scene: Completed ["Yellow block is in the blue bowl.", "Blue block is in the blue bowl."] Robot thought: I'm done.

*Translation: "I changed my plan. Please also put the blue block inside the blue bowl."

(c) Multilingual Interaction

Scene: There is a purple bowl, red block, purple block, blue block, orange bowl, orange block.

Human: Put any two blocks inside the purple bowl. Robot thought: Goal state is ["Two blocks are inside the

Robot action: Pick the red block and place it in the purple

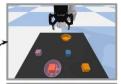
Scene: Completed ['Red block is in purple bowl.'] Robot thought: One more block is needed to be inside the

Robot action: Pick the purple block and place it in the

Scene: The purple block is too heavy to be picked up.

Robot thought: I need to find a lighter block. Robot action: Pick the blue block and place it inside the

Scene: Completed ["Two blocks are inside the purple



(b) Self-Proposing Goals under Infeasibility

Scene: There is a purple bowl, red block, purple block, blue block, orange bowl, orange block. Human: Put any two blocks inside the purple bowl.

Robot action: Pick the red block and place it inside the purple bowl.

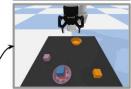
Robot action: Pick the purple block and place it inside the purple bowl. Scene: The purple block is too heavy to be picked up. What's

vour new plan? Robot thought: I need to find a lighter block. Robot action: Pick the blue block and place it inside the

purple bowl.

Human: What objects are in the purple bowl? Robot thought: The purple bowl contains the red block and the blue block. Human: Where is the purple block?

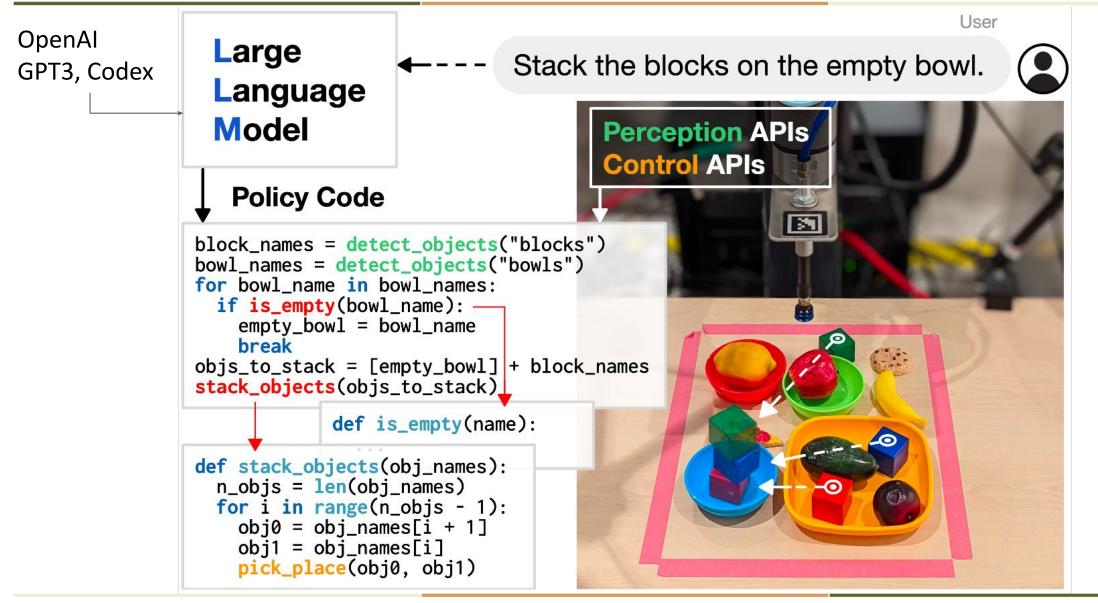
Robot thought: The purple block is on the table. Human: Any objects in the orange bowl? Robot thought: The orange bowl is empty.



(d) Interactive Scene Understanding

Foundation Models for Robots → Code as Policies

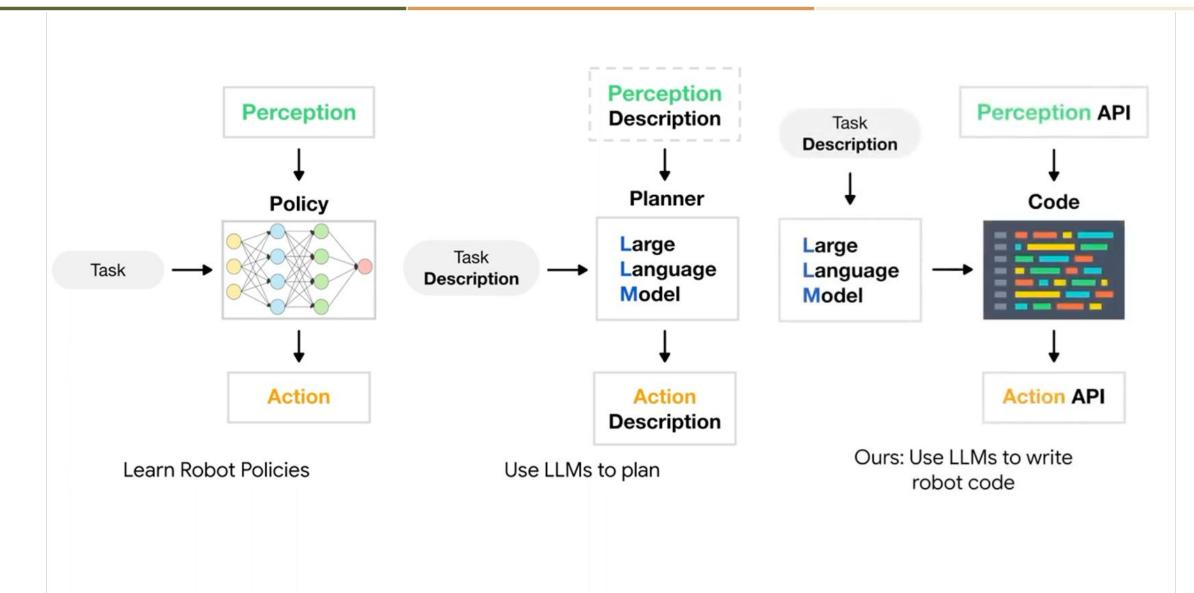
Google Code as Policies (2023)



48

Foundation Models for Robots → Code as Policies

Planning/Coding Methods (1/2)



© Minsu Jang, ETRI, 2023 video link: <u>https://code-as-policies.github.io/videos/3_min_explainer.mp4</u>

Planning/Coding Methods (2/2)

LLM Plan [14], [17], [18]

- 1. Pick up coke can
- 2. Move a bit right
- 3. Place coke can

Socratic Models Plan [16] objects = [coke can]

- 1. robot.grasp(coke can) open vocab
- 2. robot.place_a_bit_right()

Code as Policies (ours)

```
while not obj_in_gripper("coke can"):
    robot.move_gripper_to("coke can")
robot.close_gripper()
pos = robot.gripper.position
robot.move_gripper(pos.x, pos.y+0.1, pos.z)
robot.open_gripper()
```

Foundation Models for Robots → Code as Policies

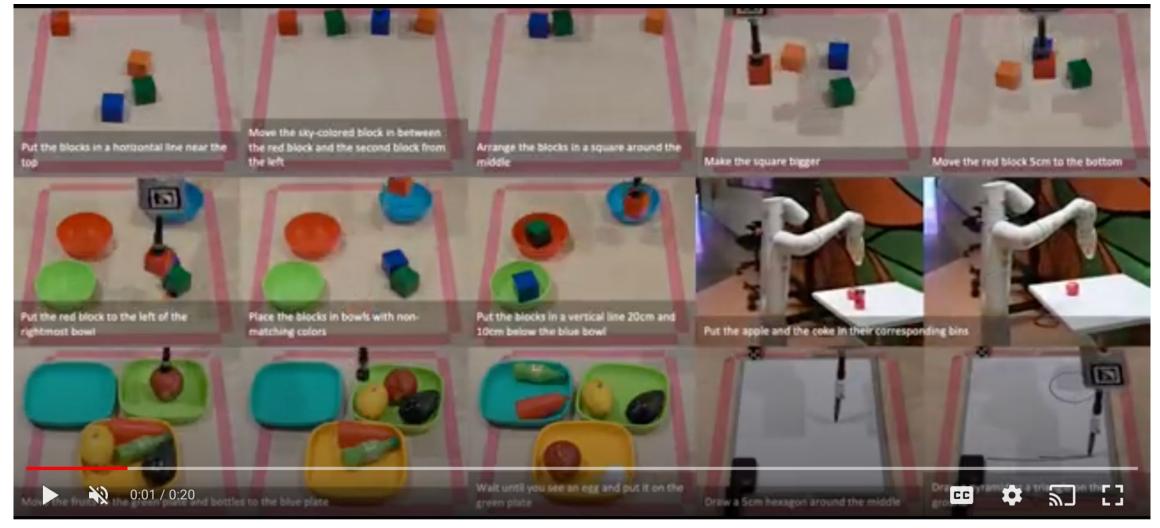
Prompts (excerpts)

```
# stack the blocks in the empty bowl.
empty_bowl_name = parse_obj('empty bowl')
block_names = parse_obj('blocks')
obj_names = [empty_bowl_name] + block_names
stack_objs_in_order(obj_names=obj_names)
```

```
# define function stack_objs_in_order(obj_names).
def stack_objs_in_order(obj_names):
    for i in range(len(obj_names) - 1):
        put_first_on_second(obj_names[i + 1], obj_names[i])
```

```
# while the red block is to the left of the blue bowl, move it to the
right 5cm at a time.
while get_pos('red block')[0] < get_pos('blue bowl')[0]:
    target_pos = get_pos('red block') + [0.05, 0]
    put_first_on_second('red block', target_pos)
```

Demonstrations

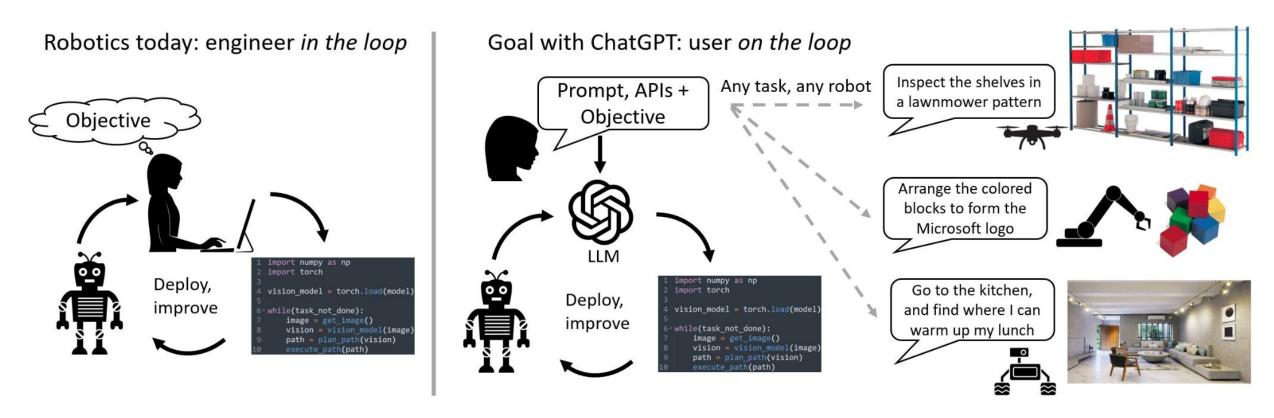


video link: https://code-as-policies.github.io/videos/tasks.mp4

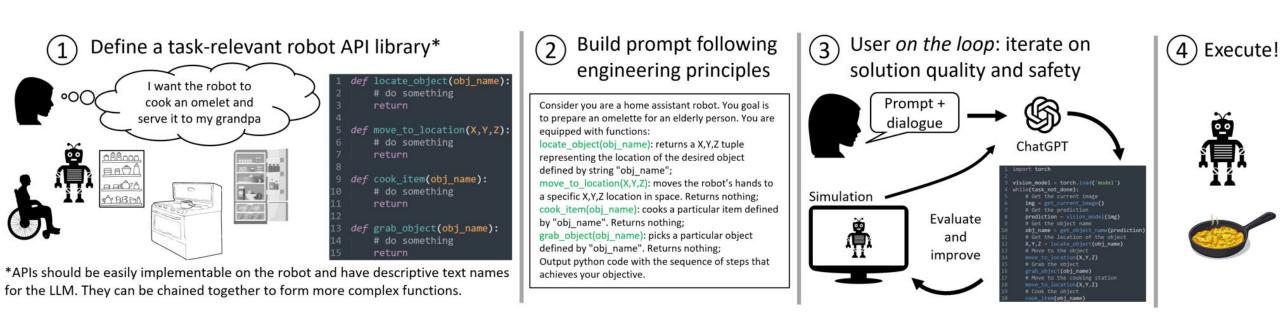
Foundation Models for Robots \rightarrow ChatGPT for Robotics

Microsoft ChatGPT for Robotics (2023)

- User-In-The-Loop way of developing robotics codes
- Users provide high-level feedback to the large language model (LLM) while monitoring the robot's performance.



Microsoft ChatGPT for Robotics (2023)



project site: <u>https://www.microsoft.com/en-us/research/group/autonomous-systems-group-robotics/articles/chatgpt-for-robotics/</u>

Prompting

Imagine we are working with a household robot. The job of this robot is to make an omelette. The objects available around are:

fridge, bowl, pan, oil, stove

The main functions you can use are:

locate_object(object_name): Returns the XYZ coordinates of an object of interest.

go_to_location(object_name): Moves robot to a location specified by XYZ coordinates. Returns nothing.

pick_up(object_name): Picks up the object of interest. Returns nothing.

use_item(object_name): Takes the name of an object as input. Performs an appropriate action on the object at hand (pour oil, crack eggs). Returns nothing.

Can you make use of these to write code to go to the kitchen and make an omelette?

Sure, here is an example Python code that utilizes the provided functions to prepare an omelette for an elderly person:

```
fridge_location = locate_object("fridge")
bowl_location = locate_object("bowl")
pan_location = locate_object("pan")
stove_location = locate_object("stove")
oil_location = locate_object("oil")
```

```
# Start the omelette-making process
go_to_location(fridge_location)
pick_up("eggs")
go_to_location(bowl_location)
use_item("eggs") # Crack eggs into the bowl
go_to_location(pan_location)
pick_up("pan")
use_item("pan") # Place the pan on the stove
go_to_location("oil")
pick_up("oil")
go_to_location(pan_location)
use_item("oil") # Pour oil into the pan
go_to_location("bowl")
pick_up("hewl")
```

Foundation Models for Robots → ChatGPT for Robotics

Structured & Interactive Prompting

Imagine you are helping me interact with a mobile ground robot. You are in a room that contains several objects: three chairs, a glass table, a mirror, and two couches. All of your outputs need to be identified by one of the following tags: <question> Always ask me a clarification questions if you are unsure </question> <reason> Explain why you did something the way you did it </reason> <command> Output code command that achieves the desired goal </command> For example: Me: Go to the chair You: <question> There are three chairs in the world, which one do you want me to go to? </question> Me: Go to "chair_3" You: <command> target_location = get_location("chair_3"); move_to_location(target_location); </command> </reason> I found the location of the chair with the get_location function, and moved the robot towards the desired location </reason> Are you ready?

Yes, I am ready. Please give me your first command.

Go to the couch

question> There are two couches in the room. Which couch do you want me to go to? </question>

Go to the second sofa

@ <command> target_location = get_location("second_sofa"); move_to_location(target_location); </command> <reason> I used the get_location
function to find the location of the second sofa and then moved the robot towards that location. </reason>

Now move to the other one

command> target_location = get_location("first_sofa"); move_to_location(target_location); </command> <reason> I used the get_location
function to find the location of the first sofa and then moved the robot towards that location. </reason>

Demonstrations

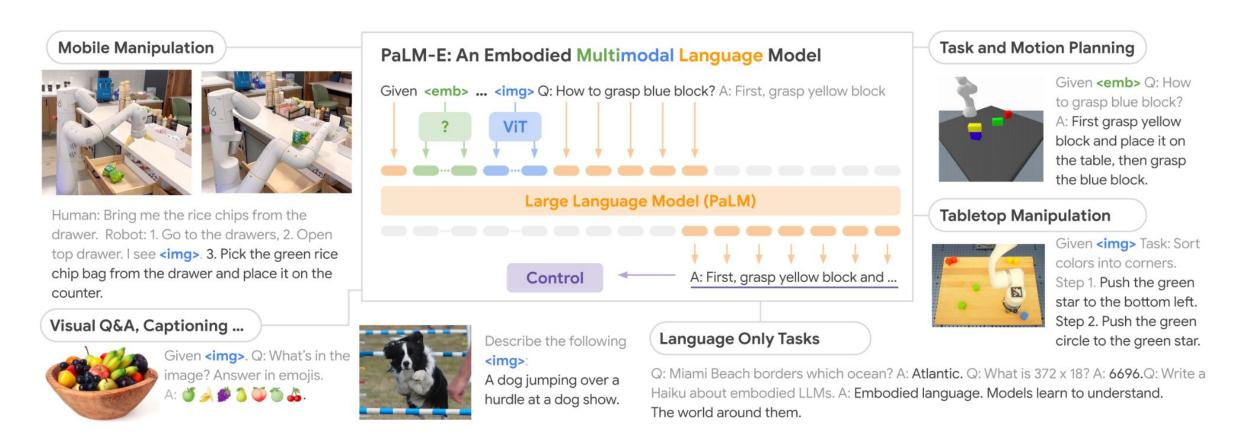
video link: https://youtu.be/wLOChUtdgoA

© Minsu Jang, ETRI, 2023

Foundation Models for Robots \rightarrow PaLM-E

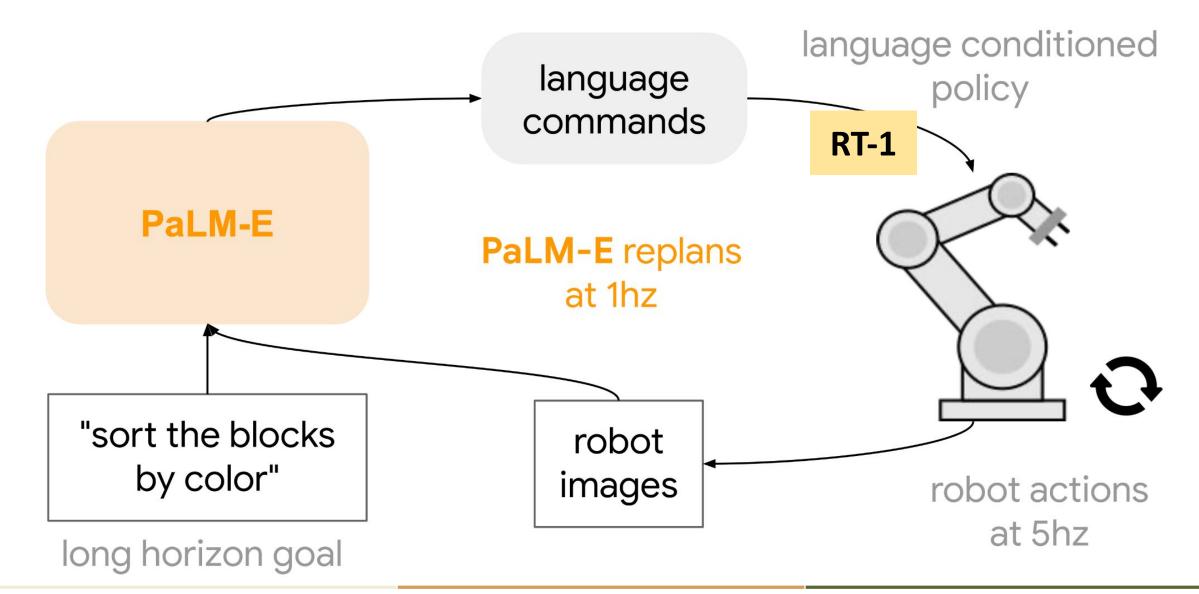
Google PaLM-E: An Embodied Multimodal Language Model (2023)

- LLM + ViT \rightarrow Action Directions
- Integrated embodied reasoning: affordance prediction, failure detection
- Generalist Model: Planning, VQA, Image Captioning etc.



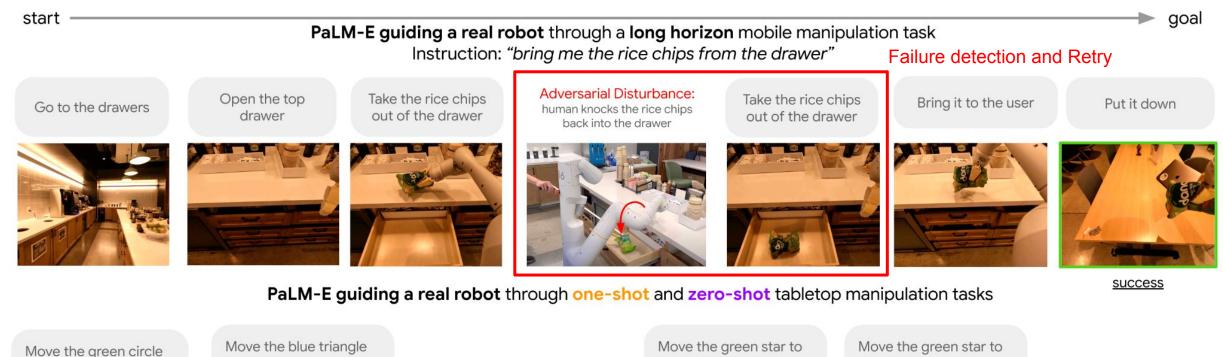
Foundation Models for Robots \rightarrow PaLM-E

System Architecture



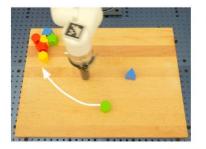
© Minsu Jang, ETRI, 2023

Embodied reasoning

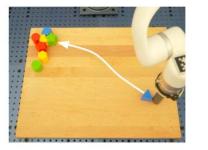


success

to the yellow hexagon



to the group

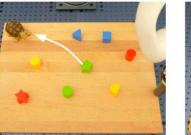


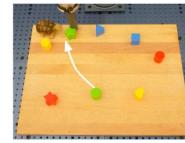
one-shot: "Move the remaining blocks to the group"

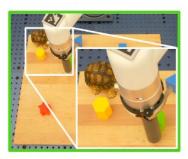
the top left corner

the green circle

success







zero-shot: "Move the green blocks to the turtle"

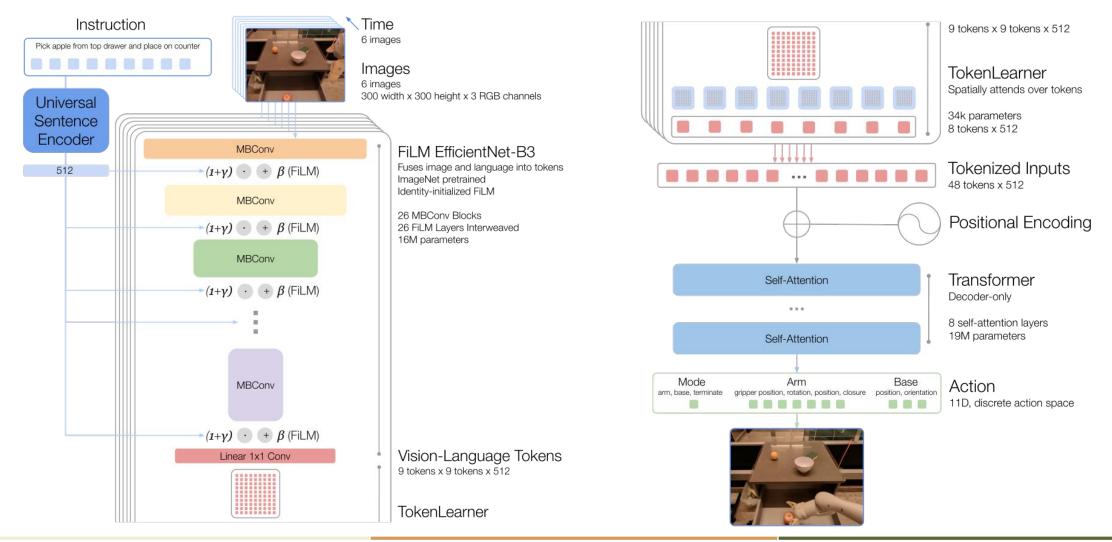
Performance

	Object-	LLM	En	nbodi	ed VQ	A	Plan	ning
	centric	pre-train	\mathbf{q}_1	q_2	q_3	q_4	p_1	p ₂
SayCan (oracle afford.) (A	hn et al., 2022)	1	-	-	-	-	38.7	33.3
PaLI (zero-shot) (Chen et a	ıl., 2022)	\checkmark	-	0.0	0.0	-	-	-
PaLM-E (ours) w/ input en	c:							
State	✓(GT)	X	99.4	89.8	90.3	88.3	45.0	46.1
State	✓(GT)	\checkmark	100.0	96.3	95.1	93.1	55.9	49.7
ViT + TL	✓(GT)	\checkmark	34.7	54.6	74.6	91.6	24.0	14.7
ViT-4B single robot	×	\checkmark	-	45.9	78.4	92.2	30.6	32.9
ViT-4B full mixture	×	\checkmark	-	70.7	93.4	92.1	74.1	74.6
OSRT (no VQA)	\checkmark	\checkmark	-	-	-	-	71.9	75.1
OSRT	\checkmark	\checkmark	99.7	98.2	100.0	93.7	82.5	76.2

Foundation Models for Robots \rightarrow RT-1

RT-1: Robot Transformer 1

• Vision + Language \rightarrow Control Commands



RT-1 Dataset

- **13 EDR robot** manipulators, each with a 7-degree-of-freedom arm, a 2-fingered gripper, and a mobile base
- 700+ Tasks
- 130k episodes over 17 months

© Minsu Jang, ETRI, 2023

RT-1 Tasks

Skill	Count	Description	Example Instruction
Pick Object	130	Lift the object off the surface	pick iced tea can
Move Object Near Object	337	Move the first object near the second	move pepsi can near rxbar blueberry
Place Object Upright	8	Place an elongated object upright	place water bottle upright
Knock Object Over	8	Knock an elongated object over	knock redbull can over
Open Drawer	3	Open any of the cabinet drawers	open the top drawer
Close Drawer	3	Close any of the cabinet drawers	close the middle drawer
Place Object into Receptacle	84	Place an object into a receptacle	place brown chip bag into white bowl
Pick Object from Receptacle and Place on the Counter	162	Pick an object up from a location and then place it on the counter	pick green jalapeno chip bag from paper bowl and place on counter
Section 6.3 and 6.4 tasks	9	Skills trained for realistic, long instructions	open the large glass jar of pistachios pull napkin out of dispenser grab scooper
Total	744		

Evaluations

Evaluations	Methods
Seen Tasks	 evaluates performance on 200 instructions sampled from the training set 36 for picking objects, 35 for knocking objects, 35 for placing things upright, 48 for moving objects, 18 for opening and closing various drawers, and 36 for picking out of and placing objects into drawers involves varying the conditions (e.g., time of day, robot position)
Unseen Tasks	• Evaluates performance on 21 novel, unseen tasks
Distractor Robustness	 Evaluates with 30 instructions pick coke can, place coke can upright, move coke can near green rice chip bag 3 levels of difficulty: easy (0-5 distractors), medium (9 distractors), hard (9 distractors and occluded object)
Background Robustness	 Evaluates with 22 instructions 3 levels of difficulty: easy (original environment), medium (patterned tablecloth), hard (new kitchen)
Long-horizon Scenarios	 15 SayCan instructions in the real-world office kitchen tasks involve max 10 steps

Unseen Commands

1.pick coke can from top drawer and place on counter 2.pick green can from top drawer and place on counter 3.pick green rice chip bag from middle drawer and place on counter 4.pick redbull can from top drawer and place on counter 5.place 7up can into bottom drawer 6.place brown chip bag into top drawer 7.place green can into middle drawer 8.move 7up can near redbull can 9.move apple near green rice chip bag 10.move apple near paper bowl 11.move apple near redbull can 12.move blue chip bag near blue plastic bottle 13.move blue chip bag near pepsi can 14.move blue chip bag near sponge 15.move brown chip bag near apple 16.move brown chip bag near green rice chip bag 17.move brown chip bag near redbull can 18.move coke can near green jalapeno chip bag 19.move coke can near water bottle 20.move green can near 7up can 21.move green can near apple 22.move green can near coke can 23.move green jalapeno chip bag near blue chip bag 24.move green rice chip bag near orange 25.move green rice chip bag near orange can 26.move green rice chip bag near paper bowl 27.move orange can near brown chip bag

28.move pepsi can near orange can 29.move redbull can near coke can 30.move rxbar blueberry near blue plastic bottle 31.move rxbar blueberry near orange can 32.move rxbar chocolate near paper bowl 33.move rxbar chocolate near rxbar blueberry 34.move sponge near apple 35.move water bottle near 7up can 36 move water bottle near sponge 37.move white bowl near orange can 38.pick blue plastic bottle 39.pick green rice chip bag 40.pick orange 41.pick rxbar chocolate 42.pick sponge 43.place pepsi can upright 44.knock orange can over 45.pick blue plastic bottle from paper bowl and place on counter 46.pick brown chip bag from white bowl and place on counter 47.pick green can from paper bowl and place on counter 48.pick green jalapeno chip bag from white bowl and place on counter 49.pick orange can from white bowl and place on counter 50.pick redbull can from white bowl and place on counter 51.place blue plastic bottle into paper bowl 52.place coke can into paper bowl 53.place orange can into paper bowl

Distractors

Easy 2 - 5 distractors, no occlusion

Medium 9 distractors, no occlusion

Hard 9 distractors, occlusion

Backgrounds

Easy same background, same texture

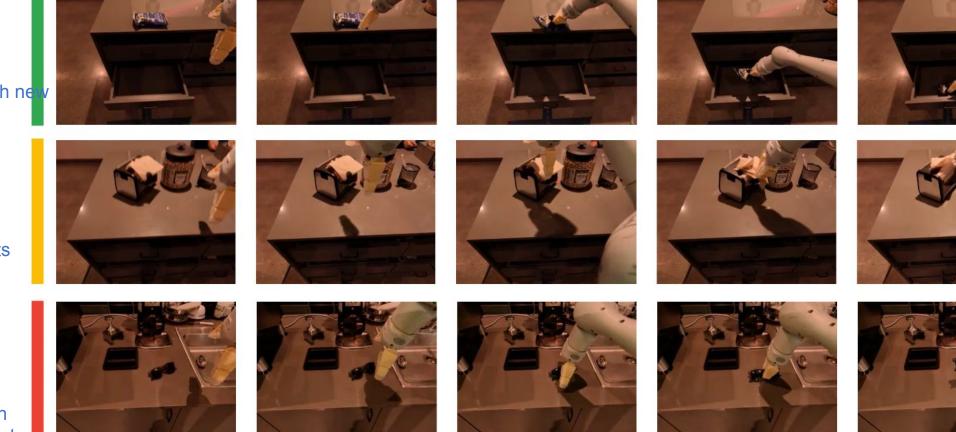
Medium same background, new texture

Hard new background, new texture

Generalization

Level 1 Generalization new real office kitchen with new lighting conditions

Level 2 Generalization + unseen distractor objects



Level 3 Generalization

+ new objects or objects in new locations, such as next to a sink

Overall Performance

Model	Seen Tasks	Unseen Tasks	Distractors	Backgrounds
Gato (Reed et al., 2022)	65	52	43	35
BC-Z (Jang et al., 2021)	72	19	47	41
BC-Z XL	56	43	23	35
RT-1 (ours)	97	76	83	59

Generalization Performance

Generalization Scenario Levels

Models	All	L1	L2	L3
Gato Reed et al. (2022)	30	63	25	0
BC-Z Jang et al. (2021)	45	38	50	50
BC-Z XL	55	63	75	38
RT-1 (ours)	70	88	75	50

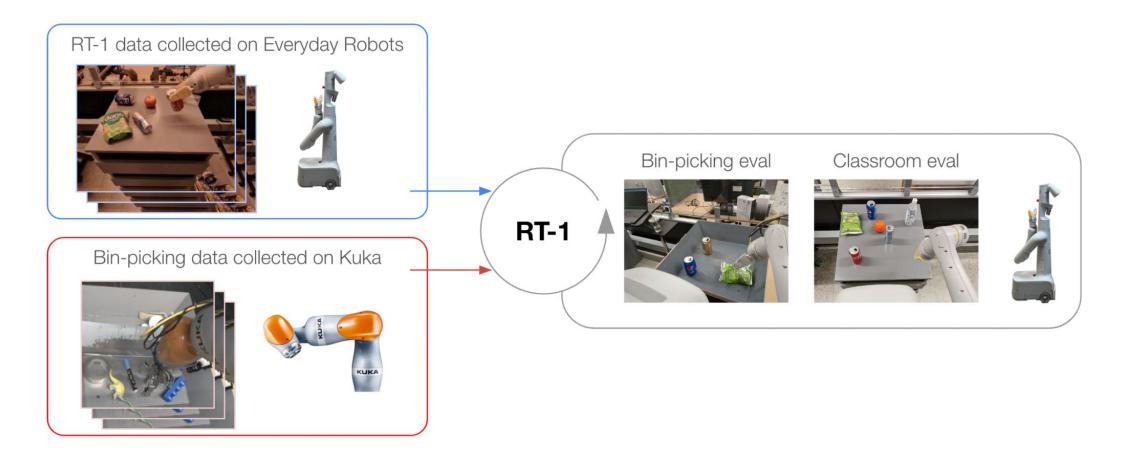
Data augmentation with synthetic data

- Performance improved for objects and tasks only seen in the simulation
 - —> RT-1 can effectively be augmented with synthetic data

		Real Objects	Sim Objects	(not seen in real)
Models	Training Data	Seen Skill w/ Objects	Seen Skill w/ Objects	Unseen Skill w/ Objects
RT-1 RT-1	Real Only Real + Sim	92 90(-2)	23 87(+64)	7 33(+26)

Generalization over Embodiment Gap

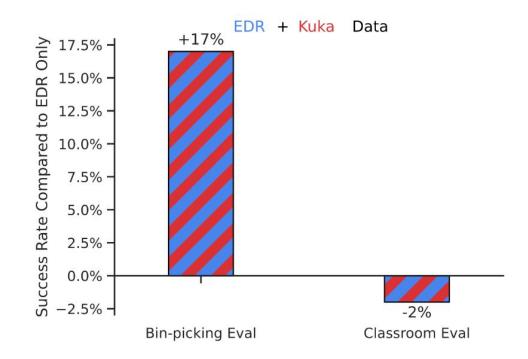
- RT-1 Dataset + Kuka Bin-Picking Dataset (209K Episodes)
- Evaluation of EDR Robot for Bin-Picking and Classroom Eval Tasks



Generalization over Embodiment Gap

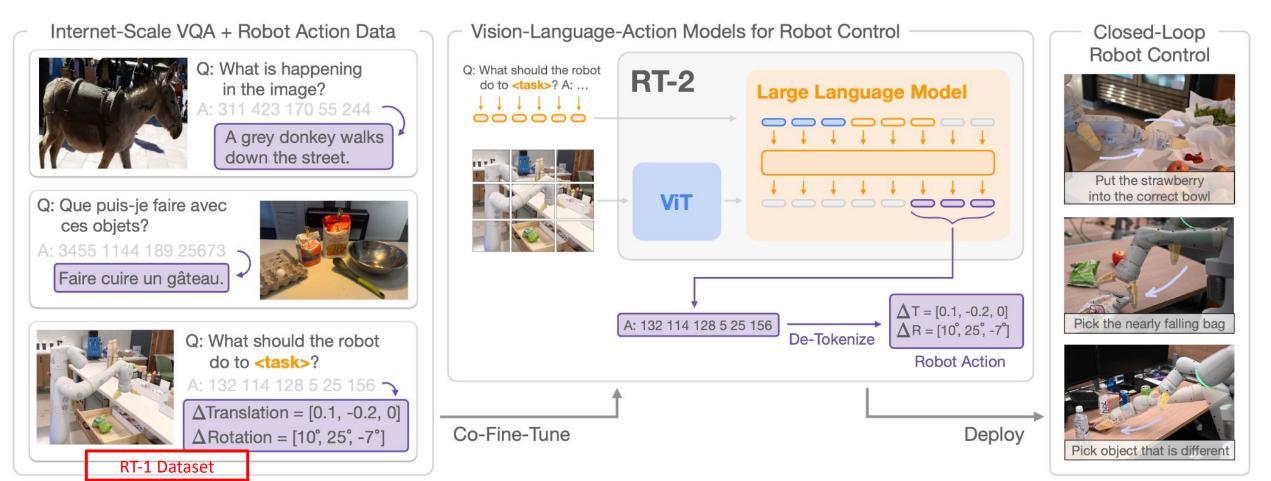
- RT-1 Dataset + Kuka Bin-Picking Dataset (209K Episodes)
- Evaluation of EDR Robot for Bin-Picking and Classroom Eval Tasks

Models	s Training Data Classroom eval Bin-pic			
RT-1	Kuka bin-picking data + EDR data	90(-2)	39(+17)	
RT-1 RT-1	EDR only data Kuka bin-picking only data	92 0	22 0	



Google RT-2 (2023)

- Vision-Language-Action Model
- RT-1 on VLM (PaLI-X 5B, 55B ('23), PaLM-E 12B ('23))

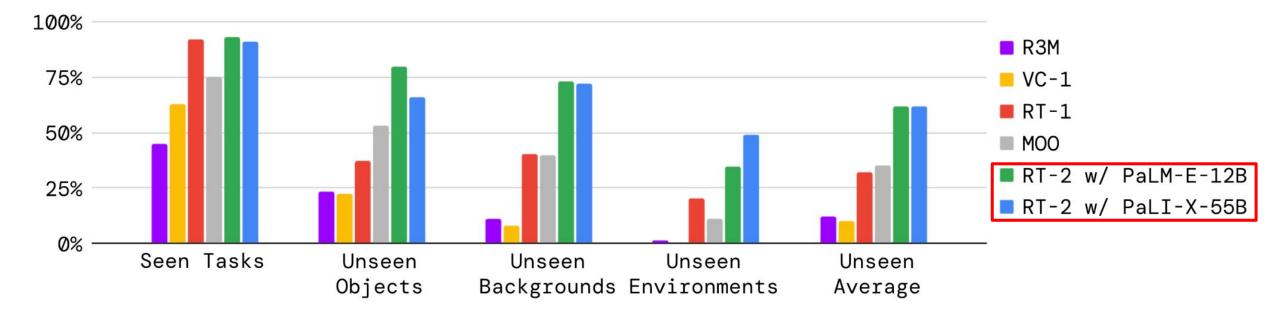


Evaluation

Does RT-2 generalize better than RT-1?



Performance



Emergent capability

Prompt:

Given Instruction: Bring me a drink. Prediction: Plan: pick 7up can. Action: 1 143 129 123 145 Plan: move green can near 114 115 127

Prompt:

Given Instruction: Move all the objects together. Prediction:

green rice chip bag. Action: 1 128 126 127 135 123 119 127

Prompt:

Given Instruction: Pick the object that is different from all other objects

Prediction:

Plan: pick rxbar chocolate. Action: 1 128 129 125 131 125 128 127

Prompt:

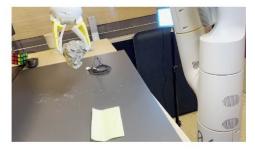
Given Instruction: Move the green objects together.

Prediction:

Plan: move green can near green rice chip bag. Action: 1 130 129 121 131 127 128 127

Prompt:

Given I need to hammer a nail, what object from the scene might be useful? Prediction: Rocks. Action: 1 129 138 122 132 135 106 127



Issues in Foundation Models for Robotics

Research Issues

- Multi-Modality
 - Audio, Lidar, Depth, Haptic, UWB, Ultrasonic,
- Context Length
 - Long-Horizon Tasks + Many Modality...
- Real-time
 - Optimizations needed for RT-1, RT-2 to make them work in 2~3hz
- Safety, Ethics, Trustworthiness, Responsibility
 - Alignment with human and social values
 - How can we validate?

Foundation Models for Robots \rightarrow Research Issues in Foundation Models for Robotics

Robot Data at Scale

언어				영상			
				Method	Public	Multimodal Pretraining data Dataset(s)	Size
				CLIP [215]	× (WebImageText [215]	400M
				ALIGN [129]	×	ALIGN1.8B [129]	1800M
				WenLan [123]	×	RUC-CAS-WenLan [123]	30M
GPT-3 dataset 499B tokens / 0.75TB	<i>The Pile</i> dataset (GPT-Neo) 247B tokens / 0.8TB	<i>MassiveText</i> dataset (Chinchilla) 2.3T tokens / 10.5TB		Florence [321] FILIP [311]	x x	FLD-900M [321] FILIP300M [311], CC3M [235],	900M 340M
				SLIP [200] FLIP [160] MaskCLIP [67] CLIPA [159] CLIPAv2 [158] EVA [80]	55555 5	C12M [30], YFCC100M [258] YFCC15M [258, 214] LAION400M [226] YFCC15M [258, 214] LAION-400M [226] LAION-2B [226], DataComp- 1B [83] IN21K [82], CC12M [30], CC2M [325] (324]	15M 400M 15M 400M 3000M 29.6M
Infiniset dataset (LaMDA) 2.8T tokens / 12.6TB	Stability <i>The Pile</i> dataset 1.5T tokens / 5TB	<i>RedPajama</i> dataset 1.2T tokens / 4TB	GPT-4 (estimate) 20T tokens / 40TB	EVA-CLIP [249] EVA-02 [79] OpenCLIP [49]	555	CC3M [235], O365 [234], COCO [163], ADE [356] Merged-2B [249] Merged-2B [249] LAION-400M [226]LAION-	2000M 2000M 5400M
로봇	Video		Vic	l <u>eo</u>	Swee	5B [227]	Video
	RT-1 130K (real)		~(anguage-Table 600K eal+synth)			VIMA 650K (synth)

© Minsu Jang, ETRI, 2023

Stanford PhysObjects (2023)

 Object-centric dataset of 36.9K crowd-sourced and 417K automated physical concept annotations of common household objects

Distance, Camera Motion, Background Complexity, Lighting

near, horizontal, simple, bright

medium, vertical, busy, bright

Sponsored by 🔿 Meta

medium, diagonal, busy, bright

near, horizontal, simple, dim

medium, horizontal, busy, dim

far, horizontal, busy, dim

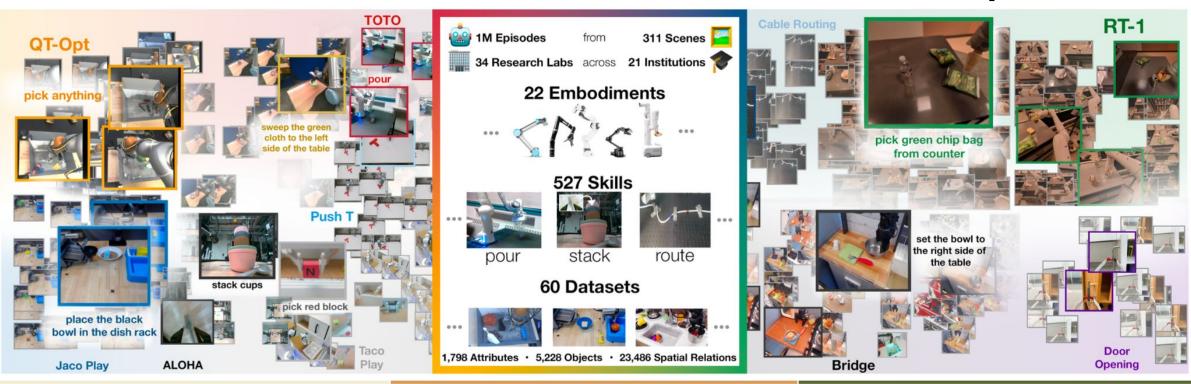
Google Diffusion Rosie (2023)

Realistic Scene and Object Synthesis using Diffusion

video link: https://diffusion-rosie.github.io/videos/coke_compressed.mp4

Open-X Embodiment Dataset (2023)

- Open, large-scale dataset for robot learning curated from 21 institutions across the globe
- X-Embodiment Robotic Learning: diversity in behaviors, robot embodiments and environments → Generalized robotic policies

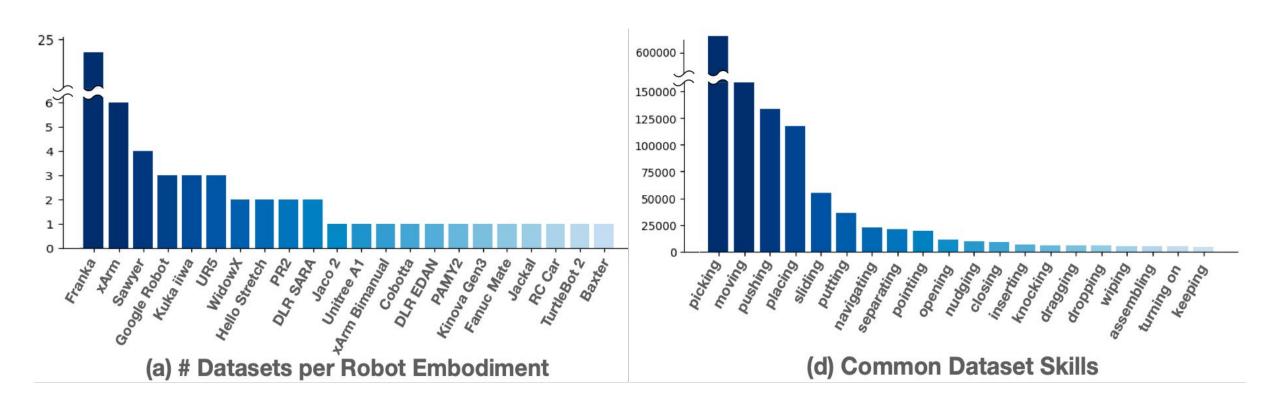


© Minsu Jang, ETRI, 2023 Padalkar, Abhishek, et al. "Open x-embodiment: Robotic learning datasets and rt-x models." arXiv preprint arXiv:2310.08864 (2023).

Foundation Models for Robots → Research Issues in Foundation Models for Robotics

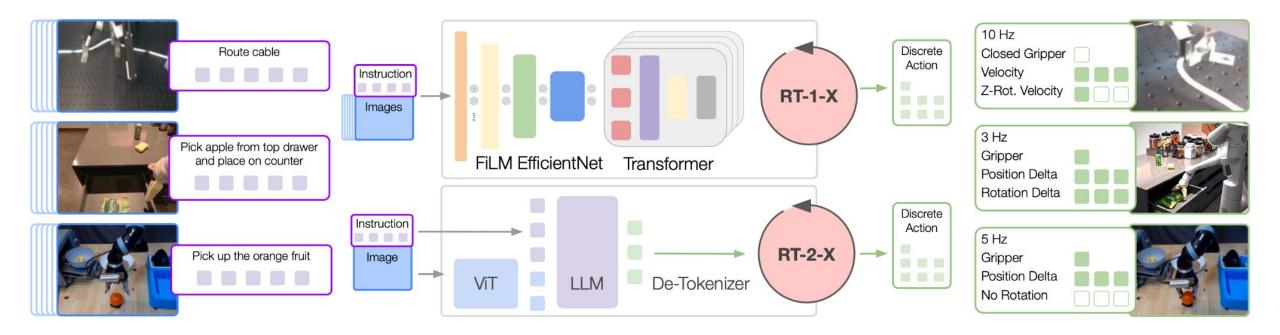
Open-X Embodiment Dataset

• Robots and Skills



Open-X Embodiment Dataset

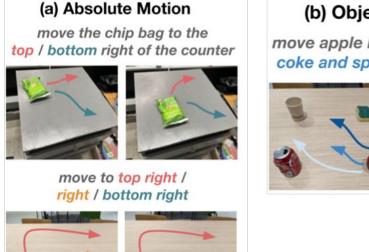
• Training RT-1 and RT-2 with Open-X Embodiment Dataset



Foundation Models for Robots \rightarrow Research Issues in Foundation Models for Robotics

Open-X Embodiment Dataset

• Emergent Skills (OOD Skills): transfer of skills across robots



(b) Object-Relative Motion

move apple between coke and cup / coke and sponge / cup and sponge

(c) Preposition Alters Behavior

put apple on cloth / move apple near cloth

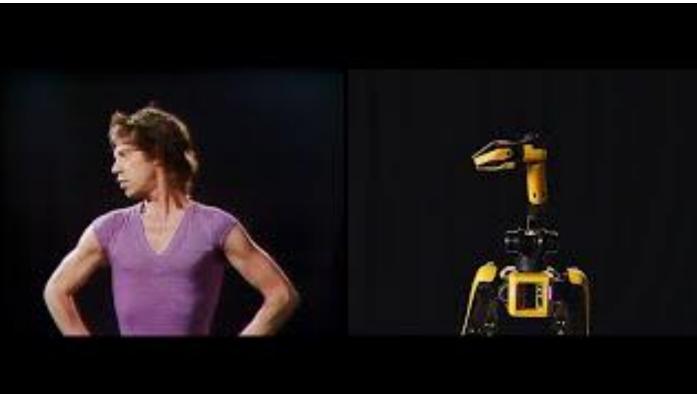
put orange into the pot / move orange near pot

Row	Model	Size	History Length	Dataset	Co-Trained w/ Web	Initial Checkpoint	Emergent Skills Evaluation	RT-2 Generalization Evaluation
(1)	RT-2	55B	none	Google Robot action	Yes	Web-pretrained	27.3%	62%
(2)	RT-2-X	55B	none	Robotics data	Yes	Web-pretrained	75.8%	61%
(3)	RT-2-X	55B	none	Robotics data except Bridge	Yes	Web-pretrained	42.8%	54%
(4)	RT-2-X	5B	2	Robotics data	Yes	Web-pretrained	44.4%	52%
(5)	RT-2-X	5B	none	Robotics data	Yes	Web-pretrained	14.5%	30%
(6)	RT-2-X	5B	2	Robotics data	No	From scratch	0%	1%
(7)	RT-2-X	5B	2	Robotics data	No	Web-pretrained	48.7%	47%

Foundation Models for Robots → Research Issues in Foundation Models for Robotics

Boston Dynamics Al Institute

"What we are aiming for is to have AI advance in robots so that it can **be shown a task by a human, learn how its done, do it itself**, and then even communicate to other robots how to do that task." – Marc Raibert (ICRA'23)



© Minsu Jang, ETRI, 2023

Foundation Models for Robots → Research Issues in Foundation Models for Robotics

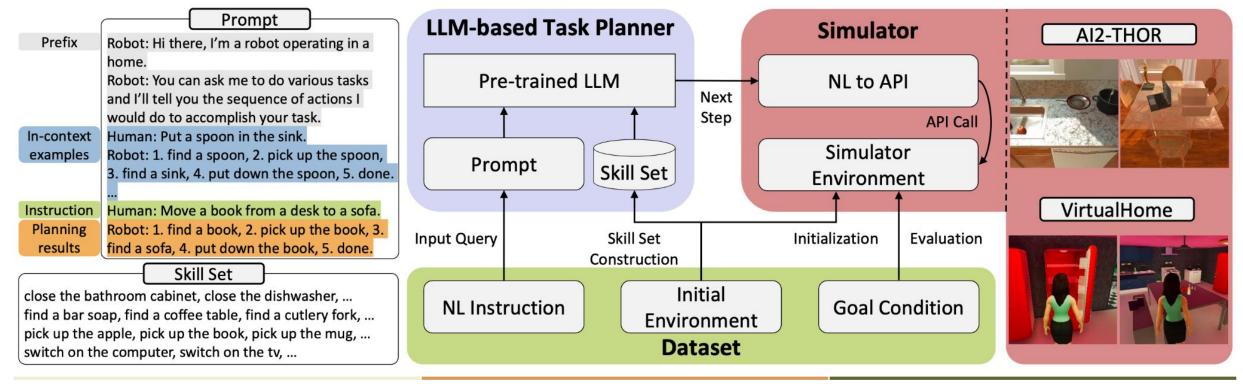
Boston Dynamics Al Institute

• Watch - Understand - Do

Research@ETRI on Foundation Models for Robotics

LOTA-Bench: Benchmarking Language-oriented Planners for Embodied Agents

- Automatic evaluation of LLM-based embodied task planners
- Embodied task domains: ALFRED, Watch-And-Help
- Environments: AI2-Thor, VirtualHome
- No human supervision is needed



© Minsu Jang, ETRI, 2023

ALFRED

- A Simulation and a dataset for training and testing **Domestic Task Planning**
- Al2Thor simulator

video: <u>https://www.youtube.com/watch?v=1XoRLNmXffo&t=1s</u>

ALFRED Tasks

7 Task Types

	2 I		
	Pick & Place	Stack & Place	Pick Two & Place
item(s) receptacle	Book Desk	Fork (in) Cup Counter Top	Spray Bottle Toilet Tank
scene #	Bedroom 14	Kitchen 10	Bathroom 2
expert demonstration			
Clean & Place	Heat & Place	Cool & Place	Examine in Light
Dish Sponge	Potato Slice	Egg	Credit Card
Cart Bathroom 1	Counter Top Kitchen 8	Side Table Kitchen 21	Desk Lamp Bedroom 24
- 0			

A Task Sample

Foundation Models for Robots → Research@ETRI on Foundation Models for Robotics

VirtualHome

video: http://virtual-home.org/images/video_teaser.mp4

Homepage: <u>http://virtual-home.org/</u>

VirtualHome Tasks

5 Task Types

Task Type	Goal Condition	Instruction
$egin{array}{ccc} Setup & a & dinner \ table \end{array}$	ON(plate, kitchen table): 1, ON(water glass, kitchen table): 1, ON(wine glass, kitchen table): 1, ON(cutlery fork, kitchen table): 1	put the following on the kitchen table - 1 cutlery fork, 1 wine glass, 1 water glass and one plate
Put groceries	INSIDE(cupcake, fridge): 1, INSIDE(pancake, fridge): 1, INSIDE(pound cake, fridge): 1, INSIDE(apple, fridge): 1	Please get the apple, the pancake, the pound cake and the cupcake and put them all in the fridge.
Prepare a meal	ON(pancake, kitchen table): 1, ON(pudding, kitchen table): 1	Robot, please put the pancake and pudding on the kitchen table.
Wash dishes	INSIDE(plate, dishwasher): 1, INSIDE(wine glass, dishwasher): 1, SWITCHON(dishwasher):1	Place one wine glass and one plate in the dishwasher and turn it on.
Prepare snacks	ON(juice, coffee table): 1, ON(apple, coffee table): 1	Put one cupcake and one apple on the coffee table

Baseline Language-model based Planner

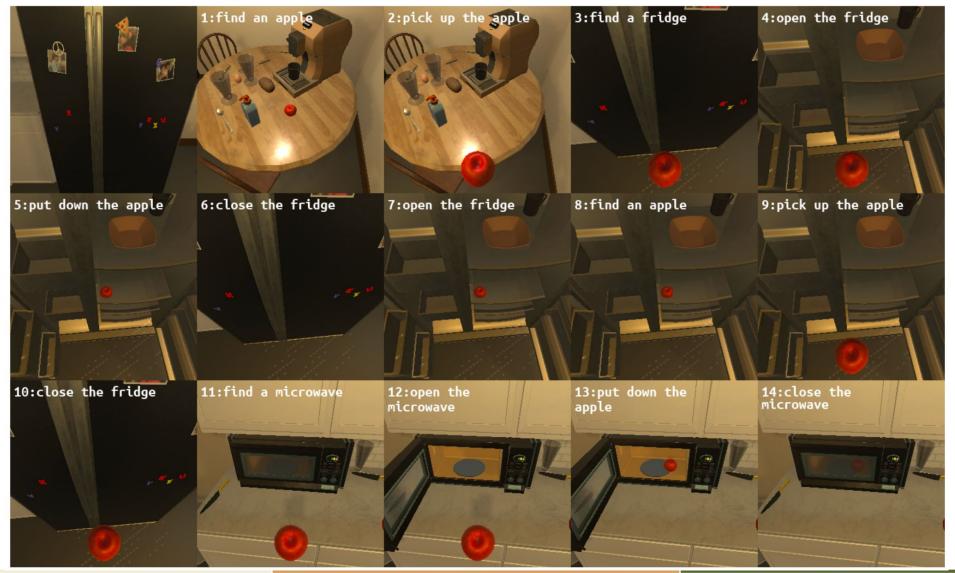
• Given a natural language instruction *i*, a plan *P* is constructed via a greedy search based on the skill probability *p* which is calculated as:

$$p(s|i, s_1, \cdots, s_{t-1}) = p_{\text{LLM}}(s|P) = \prod_{n=1}^{n_s} p_{\text{LLM}}(w_n^s|P, w_0^s, \cdots, w_{n-1}^s)$$

- s_t : a skill to perform at time t
- *LLM*: a pre-trained large-language model
- A prompt *P* consists of a prefix, in-context examples, an instruction *i*, and a history of previously executed skills
- A skill s is described by n_s subword tokens $s = (w_1^s, w_1^s, ..., w_1^s)$
- w_n^s : *n*-th subword for a skill *s*
- $w_0^s = \{\}$

Planning Example

Instruction: Put a chilled apple in the microwave.



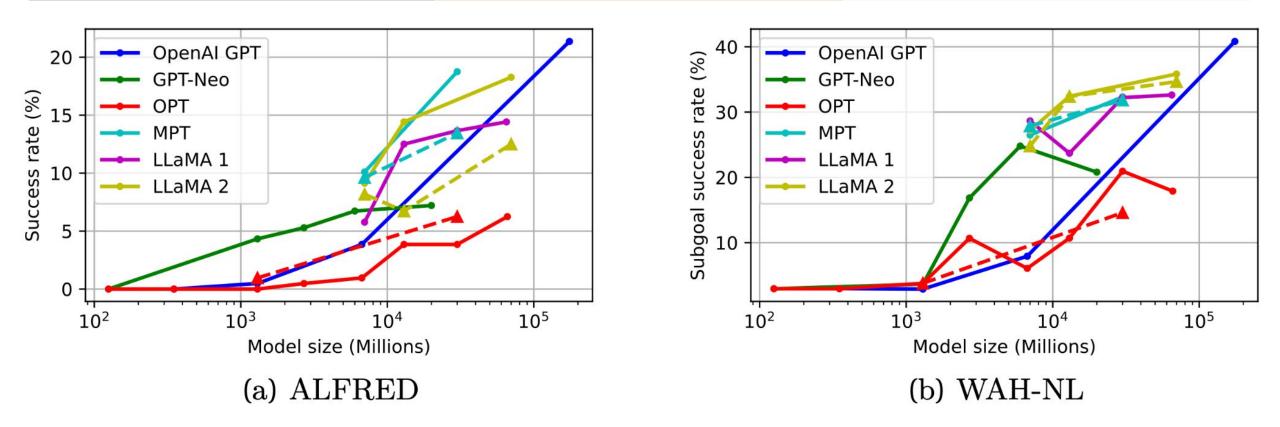
© Minsu Jang, ETRI, 2023

Experiments with many LLMs

Class	Model name	Model size	Remark	Class	Model name	Model size	Remark
OpenAI GPT	ada babbage curie text-davinci-003	$350M \\ 1.3B \\ 6.7B \\ 175B$		MPT	mosaicml/mpt-7b mosaicml/mpt-30b mosaicml/mpt-7b-instruct mosaicml/mpt-30b-instruct	7B 30B 7B 30B	Instruction-tuned Instruction-tuned
GPT Neo	EleutherAI/gpt-neo-125m EleutherAI/gpt-neo-1.3B EleutherAI/gpt-neo-2.7B EleutherAI/gpt-j-6b EleutherAI/gpt-neox-20b	125M 1.3B 2.7B 6B 20B		LLaMA 1	huggyllama/llama-7b huggyllama/llama-13b huggyllama/llama-30b huggyllama/llama-65b	7B 13B 30B 65B	
ОРТ	facebook/opt-125m facebook/opt-1.3b facebook/opt-2.7b facebook/opt-6.7b facebook/opt-13b facebook/opt-30b facebook/opt-66b facebook/opt-iml-max-1.3b	125M 1.3B 2.7B 6.7B 13B 30B 66B 1.3B	Instruction-tuned	LLaMA 2	meta-llama/Llama-2-7b-hf meta-llama/Llama-2-13b-hf meta-llama/Llama-2-70b-hf meta-llama/Llama-2-7b-chat-hf meta-llama/Llama-2-13b-chat-hf meta-llama/Llama-2-70b-chat-hf	7B 13B 70B 7B 13B 70B	Chat-tuned Chat-tuned Chat-tuned

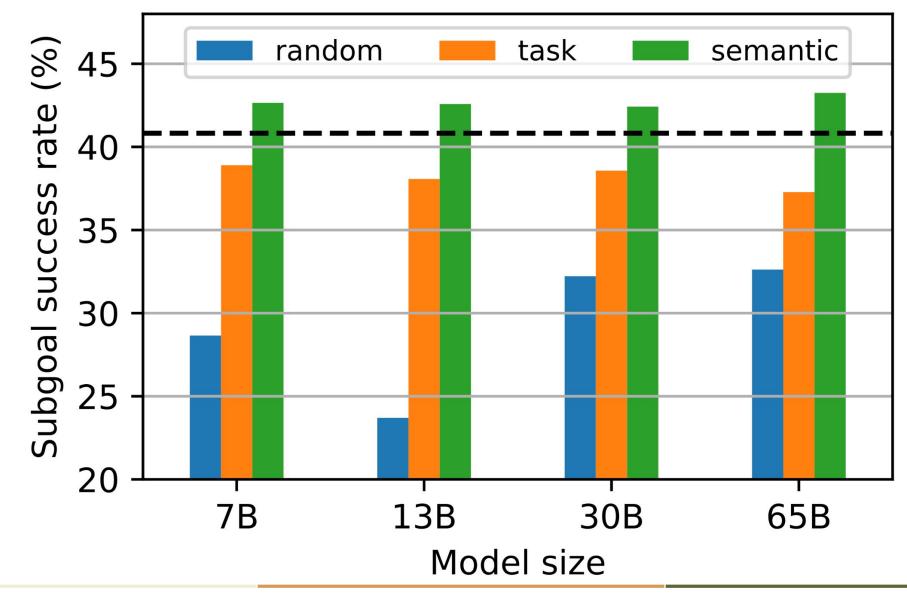
Foundation Models for Robots → Research@ETRI on Foundation Models for Robotics

Performance of Baseline Planners

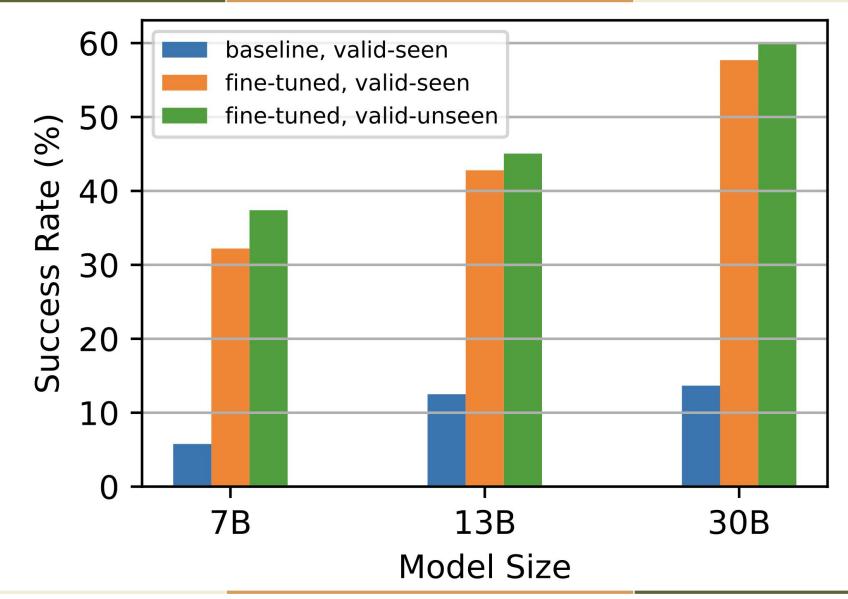


Foundation Models for Robots → Research@ETRI on Foundation Models for Robotics

In-Context Sample Selection (WAH / LLaMA1)



Finetuning (ALFRED / LLaMA1)



Summary

- Foundation models makes it possible to build "Generalist Robots"
 - Reason and Act based on common-sense and embedded knowledge.
 - Watch, hear, read and learn new skills.
 - Teach by language.

